Skip to main content

Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations

Abstract

The constitutive equation gap method (CEGM) is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. Recently, CEGM-based functional has been proposed to identify local elastic parameters based on experimental full-field measurement. From a technical point of view, this approach requires to quickly describe a space of statically admissible stress fields. We present here the technical insights, inspired from previous works in verification, that leads to the construction of such a space. Then, the identification strategy is implemented and the obtained results are compared with the actual material parameters for numerically generated benchmarks. The quality of the identification technique is demonstrated that makes it a valuable tool for interactive design as a way to validate local material properties.

This is a preview of subscription content, access via your institution.

References

  1. Sutton M.A., Wolters W.J., Peters W.H., Ranson W.F., McNeill S.R.: Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1(3), 133–139 (1983)

    Article  Google Scholar 

  2. Sutton M.A., Mingqi C., Peters W.H., Chao Y.J., McNeill S.R.: Application of an optimized digital correlation method to planar deformation analysis. Image Vis. Comput. 4(3), 143–150 (1986)

    Article  Google Scholar 

  3. Kim J.-H., Pierron F., Wisnom M.R., Syed-Muhamad K.: Identification of the local stiffness reduction of a damaged composite plate using the virtual fields method. Compos. A 38, 2065–2075 (2007)

    Article  Google Scholar 

  4. Périé, J.N., Leclerc, H., Roux, S., Hild, F.: Identification of anisotropic damage laws using digital image correlation. In: Proceeding of JNC16 (2009)

  5. Lubineau G.: Estimation of residual stresses in laminated composites using field measurements on a cracked sample. Compos. Sci. Technol. 68(13), 2761–2769 (2008)

    Article  Google Scholar 

  6. Pierron F., Green B., Wisnom M.R., Hallett S.R.: Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Compos. A 38, 2321–2332 (2007)

    Article  Google Scholar 

  7. Becker R., Vexler B.: A posteriori error estimation for finite element discretization of parameter identification problems. Numer. Math. 96, 435–459 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Johansson H., Runesson K.: Parameter identification in constitutive models via optimization with a posteriori error control. Int. J. Numer. Meth. Eng. 62, 1315–1340 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mahnken, R.: Identification of material parameters for constitutive equations. In: Stein, E., de Borst, R., Hughes, J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 2. Part 2: Solids and Structures, chapter 19. Wiley, New York (2004)

  10. Lubineau G.: A goal-oriented field measurement filtering technique for the identification of material model parameters. Comput. Mech. 44(5), 591–603 (2009)

    Article  MATH  Google Scholar 

  11. Grédiac M.: Principe des travaux virtuels et identification. Comptes-Rendus Mecanique 309, 1–5 (1989)

    MATH  Google Scholar 

  12. Grédiac M., Toussaint E., Pierron F.: Identification of the mechanical properties of materials with the virtual fields method, an alternative to finite element model updating. Comptes-Rendus Mecanique 330(2), 107–112 (2002)

    Article  MATH  Google Scholar 

  13. Avril S., Huntley J.M., Pierron F., Steele D.D.: 3d Heterogeneous stiffness reconstruction using MRI and the virtual fields method. Exp. Mech. 48, 479–494 (2008)

    Article  Google Scholar 

  14. Kavanagh K.T., Clough R.W.: Finite element application in the characterization of elastic solids. Int. J. Solids Struct. 7, 11–23 (1971)

    Article  MATH  Google Scholar 

  15. Lecompte, D., Sol, H., Vantomme, J., Habraken, A.M.: Identification of elastic orthotropic material parameters based on espi measurements. In: SEM Annual Conference and Exposition on Experimental and Applied Mechanics, June 2005

  16. Ikehata M.: Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection. SIAM J. Appl. Math. 50, 1635–1644 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Claire D., Hild F., Roux S.: Identification of a damage law by using full-field displacement measurements. Int. J. Damage Mech. 16, 179–197 (2007)

    Article  Google Scholar 

  18. Claire D., Hild F., Roux S.: Identification of damage fields using kinematic measurements. Comptes-Rendus Mecanique 330, 729–734 (2002)

    Article  MATH  Google Scholar 

  19. Geymonat G., Hild F., Pagano S.: Identification of elastic parameters by displacement field measurement. Comptes Rendus Mecanique 330(6), 403–408 (2002)

    Article  MATH  Google Scholar 

  20. Calloch S., Dureissex D., Hild F.: Identification de modèles de comportement de matériaux solides: utilisation d’essais et de calculs. Technol. Form. 100, 36–41 (2002)

    Google Scholar 

  21. Avril S., Bonnet M., Bretelle A.-S., Grédiac M., Hild F., Ienny P., Latourte F., Lemosse D., Pagano S., Pagnacco E., Pierron F.: Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48, 381–402 (2008)

    Article  Google Scholar 

  22. Avril S., Pierron F.: General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int. J. Solids Struct. 44, 4978–5002 (2007)

    Article  MATH  Google Scholar 

  23. Ladeveze, P.: Comparaison de modèles de milieux continus. Thèse de doctorat d’etat, Universite Pierre et Marie Curie (1975)

  24. Pasquet P., Florentin E., Guinard S.: A simple estimator for stress errors dedicated to large elastic finite element simulations: locally reinforced stress construction. Eng. Comput. 28(1), 15703–15713 (2011)

    Google Scholar 

  25. Lubineau, G., Florentin, E.: The global equilibrium approach and its hybrid implementation for identifying heterogeneous elastic material parameters. Comput. Struct. 89(7–8), 656–667 (2011). doi:10.1016/j.compstruc.2011.01.010

  26. Florentin E., Lubineau G.: Identification of the parameters of an elastic material model using the constitutive equation gap method. Comput. Mech. 46(4), 521–531 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Avril S., Feissel P., Pierron F., Villon P.: Comparison of two approaches for controlling the uncertainty in data differentiation: application to full-field measurements in solid mechanics. Meas. Sci. Technol. 21, 15703–15713 (2010)

    Article  Google Scholar 

  28. Lubineau G., Violeau D., Ladeveze P.: Illustrations of a microdamage model for laminates under oxidizing thermal cycling. Compos. Sci. Technol. 69(1), 3–9 (2009)

    Article  Google Scholar 

  29. Lubineau G., Ladeveze P.: Relationships between micro and meso mechanics of laminated composites. Comptes Rendus Mecaniques 333(8), 537–544 (2003)

    Google Scholar 

  30. Lubineau G., Ladevèze P.: Construction of a micromechanics-based intralaminar mesomodel, and illustrations in abaqus/standard. Comput. Mater. Sci. 43(1), 137–145 (2008)

    Article  Google Scholar 

  31. Florentin E., Gallimard L., Ladevèze P., Pelle J.-P.: Local error estimator for stresses in 3d structural analysis. Comput. Struct. 81(18–19), 1751–1757 (2003)

    Article  Google Scholar 

  32. Florentin E., Gallimard L., Pelle J.-P., Rougeot P.: Adaptive meshing for local quality of finite element stresses. Eng. Comput. 22(2), 149–164 (2005)

    Article  MATH  Google Scholar 

  33. Ladevèze P., Florentin E.: Verification of stochastic models in uncertain environments using the constitutive relation error method. Comput. Methods Appl. Mech. Eng. 196(1–3), 225–234 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Florentin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Florentin, E., Lubineau, G. Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations. Int J Interact Des Manuf 5, 227–234 (2011). https://doi.org/10.1007/s12008-011-0129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-011-0129-5

Keywords

  • Identification
  • Admissible field construction
  • Finite elements