Skip to main content
Log in

Evaluation of the immediate post-operative bone–implant condition of a proximal interphalangeal joint prosthesis by a comparative FEA modeling

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The development and the optimization of orthopaedic implants require precise studies involving geometrical, mechanical and material considerations. Moreover, the long term performance of the implant results from a compromise between the kinematic of the movement, the mechanical behavior and the bone tissue interaction. Obviously, the clinical evaluation is the best way to assess the implant performance. Nevertheless, the focus of this paper is to propose a methodology to estimate the immediate post-operative interactions between a proximal interphalangeal (PIP) joint prosthesis and the surrounding bone tissue. A finite element model of two PIP prostheses has been developed: an Ascension PIP pyrocarbon prosthesis and a new prosthesis which is currently under development (prototype prosthesis). Extreme loadings are applied to the bone models, which can be made either of young or old bone tissue: the strain state at the interface between the bone and the implant is compared to bone tissue remodeling curves. An iterative procedure is then adopted in order to improve the design of the prototype stem such that the final strain state is compatible with physiological conditions. This study shows that the strain level is always higher in the pyrocarbon implant than in the prototype prosthesis. Such high strain levels can induce bone necrosis and could explain the clinical observations of radiolucent lines around the implant resulting from a settling to a stable position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An K.N., Chao E.Y., Cooney W.P., Linscheid R.L.: Forces in the normal and abnormal hand. J. Orthop. Res. 3(2), 202–211 (1985)

    Article  Google Scholar 

  2. Ash H., Unsworth A.: Proximal interphalangeal joint dimensions for the design of a surface replacement prosthesis. Proceedings of the Instituion of Mechanical Engineers, Part H. J. Eng. Med. 210(2), 95–108 (1996)

    Article  Google Scholar 

  3. Bravo C.J., Rizzo M., Hormel K.B., Beckenbaugh R.D.: Pyrolytic carbon proximal interphalangeal joint arthroplasty: results with minimum two-year follow-up evaluation. J. Hand Surg. 32(1), 1–11 (2007)

    Article  Google Scholar 

  4. Carter D.: Mechanical loading histories and cortical bone remodeling. Calcified Tissue Int. 36, S19–S24 (1984)

    Article  Google Scholar 

  5. Carter, D.R., Fyhrie. D.P., Whalen, R.T.: Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomech. 20(8), 785–787, 789–794 (1987)

    Google Scholar 

  6. Doblaré M., García J.M.: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34(9), 1157–1170 (2001)

    Article  Google Scholar 

  7. Doré R., Pailhes J., Fischer X., Nadeau J.P.: Identification of design variables and criterion variables towards the integration of user requirements into preliminary design. Int. J. Prod. Dev. 4(5), 508–529 (2007)

    Article  Google Scholar 

  8. Fyhrie D.P., Carter D.R.: A unifying principle relating stress to trabecular bone morphology. J. Orthop. Res. 4(3), 304–317 (1986)

    Article  Google Scholar 

  9. Herren D.B., Schindele S., Goldhahn J., Simmen B.R.: Problematic bone fixation with pyrocarbon implants in proximal interphalangeal joint replacement: short-term results. J. Hand Surg. J. Br. Soc. Surg. Hand 31(6), 643–651 (2006)

    Google Scholar 

  10. Hobatho, M., Rho, J., Ashman, R.: Atlas of mechanical properties of human cortical and cancellous bone. In: Van der Perre, G., Lowet, G., Borgwardt, A. (eds.) In Vivo Assessment of Bone Quality by Vibration and Wave Propagation Techniques. Part II, pp. 7–38. ACCO, Leuven (1992)

  11. Huachou Z., Kitazawa A., Kushida Z., Nagano A.: Longitudinal study of age- and menepause-related metacarpal index changes in Japanese adult females. J. Clin. Densitom. 4(1), 43–49 (2001)

    Article  Google Scholar 

  12. Huiskes R., Weinans H.H.J.G., Dalstra M., Fudala B., Sloof T.: Adaptative bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11/12), 1135–1150 (1987)

    Article  Google Scholar 

  13. Kalichman L., Malkin I., Seibel M.J., Kobyliansky E., Livshits G.: Age-related changes and secular trends in hand bone size. HOMO J. Comp. Hum. Biol. 59(4), 301–315 (2008)

    Article  Google Scholar 

  14. Kanai S., Verlinden J.: Advanced prototyping for human- centered design for information appliances. Int. J. Interactive Des. Manuf. 3(3), 131–134 (2009)

    Article  Google Scholar 

  15. Lawrence T., Trail I.A., Noble J.: Morphological measurements of the proximal interphalangeal joint. J. Hand Surg. Br. Eur. 29(3), 244–249 (2004)

    Article  Google Scholar 

  16. Lille, R., Schiele, P., Fredenucci, J., Gueffier, X.: Prothèses ipp en pyrocarbone. résultats à moyen terme d’une série homogène de 24 cas. In: médical, S. (ed.) Arthropathies des métacarpo-phalangiennes et inter-phalangiennes de la main, actualités thérapeutiques, 2èmes rencontres de l’IMM. pp. 143–150 (2008)

  17. Maalouf G., Wehbe J., Farah G., Sawan D., Tannous Z., Nehme A., Chidiac R.-M., Gannage Yared M.-H., Jalkh S.: Phalangeal osteosonogrammetry age-related changes and assessment of a lebanese reference population. Bone 40(6), 1650–1654 (2007)

    Article  Google Scholar 

  18. Mathiowetz V., Kashman N., Volland G., Weber K., Dowe M., Rogers S.: Grip and pinch strength: normative data for adults. Arch. Phys. Med. Rehabil. 66(2), 69–74 (1985)

    Google Scholar 

  19. McNamara L.M., Prendergast P.J.: Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40(6), 1381–1391 (2007)

    Article  Google Scholar 

  20. Passuti, N.: Ostéoconduction et ostéo-induction à la surface des prothèses. In: Conférences d’enseignement de la SOFCOT, pp. 35–50 (1995)

  21. Rubin P., Leyvraz P., Rakotomanana L.: Intérêt de la modélisation numérique dans l’évaluation pré-clinique d’une prothèse fémorale de la hanche. Maîtrise Orthopédique 93, 22–27 (2000)

    Google Scholar 

  22. Schulter-Ellis F., Lazar G.: Internal morphology oh human phalanges. J. Hand Surg. 9(4), 490–495 (1984)

    Google Scholar 

  23. Stülpner M.A., Reddy B.D., Starke G.R., Spirakis A.: A three-dimensional finite analysis of adaptive remodelling in the proximal femur. J. Biomech. 30(10), 1063–1066 (1997)

    Article  Google Scholar 

  24. Wolff J.: Über die bedeutung der architektur der spongiösen substanz. Zent bl. med. Wiss. VI, 223–234 (1869)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Girod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girod, L., Berry-Kromer, V., Ben Zineb, T. et al. Evaluation of the immediate post-operative bone–implant condition of a proximal interphalangeal joint prosthesis by a comparative FEA modeling. Int J Interact Des Manuf 4, 157–167 (2010). https://doi.org/10.1007/s12008-010-0097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-010-0097-1

Keywords

Navigation