Skip to main content

Advertisement

Log in

Differential Cytotoxicity of Corticosteroids on Human Mesenchymal Stem Cells

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Corticosteroids are a common, short-term, local antiinflammatory and analgesic for treating patients with musculoskeletal disorders. Studies have shown the deleterious effects of corticosteroids on chondrocytes, suggesting a potentiation of degenerative joint disease. Mesenchymal stem cells (MSCs) are the direct progenitors of chondrocytes and other musculoskeletal tissue. Additionally, they serve an important antiinflammatory role, which can combat the chronic inflammatory state that mediates degenerative joint disease. Little is known about how corticosteroids interact with this regenerative and reparative cell population.

Questions/purposes

We asked: (1) Are corticosteroids cytotoxic to MSCs in a dose–response fashion? (2) Is there a differential effect in the level of cytotoxicity to MSCs between commercially available corticosteroid preparations?

Methods

Human MSCs were isolated and cultured from periarticular adipose tissue obtained from 20 patients undergoing primary THA. MSCs were exposed for 60 minutes to one of four commonly used corticosteroid preparations: betamethasone sodium phosphate-betamethasone acetate (6 mg/mL), dexamethasone sodium phosphate (4 mg/mL), methylprednisolone (40 mg/mL), or triamcinolone acetonide (40 mg/mL). Among the four preparations (treatment groups), cells were exposed to increasing concentrations of drugs according to the following titrations of the commercially available preparation: 0.0 (control solution of 1X phosphate buffered saline), 3.125, 6.25, 12.5, 25, 50, 75, and 100 % (undiluted commercial product). Cells were allowed to recover in standard culture media for 24 hours. After the recovery period, cell viability was measured using -(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) tetrazolium dye-based cellular viability assay and live-dead cell fluorescent staining. For the MTS assay, measurements were quantified in units of optical density (OD). ANOVA was performed at every experimental steroid concentration. When this global test was statistically significant, all pairwise comparisons were performed at that concentration with p values adjusted by the Tukey method to guard against Type I error.

Results

Exposure to corticosteroids decreased MSC viability in a curvilinear dose–response pattern. For betamethasone, the mean MTS OD at 0% steroid concentration was 1.03 (SD, 0.12) and decreased to 0.00 (SD, 0.00) at 25% steroid concentration. For dexamethasone, the mean MTS OD at 0% steroid concentration was 1.00 (SD, 0.07) and decreased to 0.00 (SD, 0.01) at 100% steroid concentration. For methylprednisolone, the mean MTS OD at 0% steroid concentration was 1.03 (SD, 0.09) and decreased to 0.00 (SD, 0.00) at 100% steroid concentration. For triamcinolone, the mean MTS OD at 0% steroid concentration was 1.02 (SD, 0.09) and decreased to 0.00 (SD, 0.00) at 75% steroid concentration. There were large differences among commercially available preparations, and these differences were present at every concentration. In general, dexamethasone was most gentle on MSCs (average OD by steroid concentration: 0% = 1.00; 3.125% = 0.86; 6.25% = 0.74; 12.5% = 0.53; 25% = 0.30; 50% = 0.20; 75% = 0.09; 100% = 0.00, triamcinolone and methylprednisolone were intermediate (triamcinolone average OD by steroid concentration: 0% = 1.02; 3.125% = 0.82; 6.25% = 0.64; 12.5% = 0.45; 25% = 0.18; 50% = 0.03; 75% = 0.00; 100% = 0.00; methylprednisolone average OD by steroid concentration: 0% = 1.03; 3.125% = 0.74; 6.25% = 0.54; 12.5% = 0.31; 25% = 0.12; 50% = 0.01; 75% = 0.00; 100% = 0.00), and betamethasone was most toxic (average OD by steroid concentration: 0% = 1.03; 3.125% = 0.74; 6.25% = 0.27; 12.5% = 0.02; 25% = 0.00; 50% = 0.00; 75% = 0.00; 100% = 0.00). ANOVA testing showed p values less than 0.0001 at every tested concentration (with the exception of the 0% control solution; p = 0.204) with subsequent pairwise comparisons supporting the relationships described above. The outcomes were maintained after stratifying by age, sex, or indication for THA (osteoarthritis versus avascular necrosis).

Conclusions

Commonly used intraarticular corticosteroids had a dose-dependent, profound, and differential effect on MSCs in this in vitro model, with betamethasone being the most toxic. Further studies are needed to assess if the in vitro effects of these agents translate into similar in vivo outcomes.

Clinical Relevance

Corticosteroids frequently are used by physicians to reduce inflammation in patients with musculoskeletal disorders, but these agents may hinder MSCs’ innate regenerative capacity in exchange for temporary analgesia. Our study suggests that choosing dexamethasone may result in less harmful effects when compared with other injectable steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006:CD005328.

  2. Bjordal JM, Johnson MI, Lopes-Martins RA, Bogen B, Chow R, Ljunggren AE. Short-term efficacy of physical interventions in osteoarthritic knee pain: a systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord. 2007;8:51.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bjordal JM, Klovning A, Ljunggren AE, Slordal L. Short-term efficacy of pharmacotherapeutic interventions in osteoarthritic knee pain: a meta-analysis of randomised placebo-controlled trials. Eur J Pain. 2007;11:125–138.

    Article  CAS  PubMed  Google Scholar 

  4. Breu A, Eckl S, Zink W, Kujat R, Angele P. Cytotoxicity of local anesthetics on human mesenchymal stem cells in vitro. Arthroscopy. 2013;29:1676–1684.

    Article  PubMed  Google Scholar 

  5. Celeste C, Ionescu M, Robin Poole A, Laverty S. Repeated intraarticular injections of triamcinolone acetonide alter cartilage matrix metabolism measured by biomarkers in synovial fluid. J Orthop Res. 2005;23:602–610.

    Article  CAS  PubMed  Google Scholar 

  6. Crespo-Diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J, Dietz AB, Terzic A. Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transplant. 2011;20:797–811.

    Article  PubMed  Google Scholar 

  7. Davis D, Cyriac M, Ge D, You Z, Savoie FH. In vitro cytotoxic effects of benzalkonium chloride in corticosteroid injection suspension. J Bone Joint Surg Am. 2010;92:129–137.

    Article  PubMed  Google Scholar 

  8. Dragoo JL, Danial CM, Braun HJ, Pouliot MA, Kim HJ. The chondrotoxicity of single-dose corticosteroids. Knee Surg Sports Traumatol Arthrosc. 2012;20:1809–1814.

    Article  PubMed  Google Scholar 

  9. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50:817–827.

    Article  PubMed  Google Scholar 

  10. Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Osteoarthritis and absenteeism costs: evidence from US National Survey Data. J Occup Environ Med. 2010;52:263–268.

    Article  PubMed  Google Scholar 

  11. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F; National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lee DH, Sonn CH, Han SB, Oh Y, Lee KM, Lee SH. Synovial fluid CD34− CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage. 2012;20:106–109.

    Article  CAS  PubMed  Google Scholar 

  13. Mankin HJ, Conger KA. The acute effects of intra-articular hydrocortisone on articular cartilage in rabbits. J Bone Joint Surg Am. 1966;48:1383–1388.

    CAS  PubMed  Google Scholar 

  14. Morito T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford). 2008;47:1137–1143.

    Article  CAS  PubMed  Google Scholar 

  15. Nakazawa F, Matsuno H, Yudoh K, Watanabe Y, Katayama R, Kimura T. Corticosteroid treatment induces chondrocyte apoptosis in an experimental arthritis model and in chondrocyte cultures. Clin Exp Rheumatol. 2002;20:773–781.

    CAS  PubMed  Google Scholar 

  16. Papacrhistou G [sic], Anagnostou S, Katsorhis T. The effect of intraarticular hydrocortisone injection on the articular cartilage of rabbits. Acta Orthop Scand Suppl. 1997;275:132–134.

  17. Rahnama R, Wang M, Dang AC, Kim HT, Kuo AC. Cytotoxicity of local anesthetics on human mesenchymal stem cells. J Bone Joint Surg Am. 2013;95:132–137.

    Article  PubMed  Google Scholar 

  18. Raynauld JP, Buckland-Wright C, Ward R, Choquette D, Haraoui B, Martel-Pelletier J, Uthman I, Khy V, Tremblay JL, Bertrand C, Pelletier JP. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2003;48:370–377.

    Article  CAS  PubMed  Google Scholar 

  19. Robion FC, Doize B, Boure L, Marcoux M, Ionescu M, Reiner A, Poole AR, Laverty S. Use of synovial fluid markers of cartilage synthesis and turnover to study effects of repeated intra-articular administration of methylprednisolone acetate on articular cartilage in vivo. J Orthop Res. 2001;19:250–258.

    Article  CAS  PubMed  Google Scholar 

  20. Sekiya I, Ojima M, Suzuki S, Yamaga M, Horie M, Koga H, Tsuji K, Miyaguchi K, Ogishima S, Tanaka H, Muneta T. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res. 2012;30:943–949.

    Article  PubMed  Google Scholar 

  21. Seshadri V, Coyle CH, Chu CR. Lidocaine potentiates the chondrotoxicity of methylprednisolone. Arthroscopy. 2009;25:337–347.

    Article  PubMed  Google Scholar 

  22. Skedros JG, Hunt KJ, Pitts TC. Variations in corticosteroid/anesthetic injections for painful shoulder conditions: comparisons among orthopaedic surgeons, rheumatologists, and physical medicine and primary-care physicians. BMC Musculoskelet Disord. 2007;8:63.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Suri P, Morgenroth DC, Hunter DJ. Epidemiology of osteoarthritis and associated comorbidities. PM R. 2012;4(5 suppl):S10–S19.

    Article  PubMed  Google Scholar 

  24. Syed HM, Green L, Bianski B, Jobe CM, Wongworawat MD. Bupivacaine and triamcinolone may be toxic to human chondrocytes: a pilot study. Clin Orthop Relat Res. 2011;469:2941–2947.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tukey JW. The Problem of Multiple Comparisons. In Braun HI, ed. The Collected Works of John W. Tukey. Vol 8. New York, NY: Chapman & Hall; 1994:1–560.

  26. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P. OARSI recommendations for the management of hip and knee osteoarthritis. Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage. 2008;16:137–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dirk R. Larson MS (Mayo Clinic Department of Biomedical Statistics and Informatics) for assistance with statistical analysis, Ruben Crespo-Diaz PhD (Mayo Clinic Center for Regenerative Medicine) for support with experimental techniques, German Norambuena MD (Mayo Clinic Department of Orthopedic Surgery) for thoughtful discussion and critique of the material, and Paul Stalboerger for aid in study logistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael J. Sierra MD.

Additional information

Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research.

Funding for this study was provided by an Accelerated Regenerative Medicine Research Grant from the Department of Regenerative Medicine of the Mayo Clinic, Rochester, MN, USA.

The institution of one or more of the authors (RJS) has received, during the study period, funding from Biomet Inc (Warsaw, IN, USA). One of the authors certifies that he (RJS), or a member of his immediate family, has received or may receive payments or benefits, during the study period, an amount of 10,000 USD to 100,000 USD from Biomet Inc (Warsaw, IN, USA).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyles, C.C., Houdek, M.T., Wyles, S.P. et al. Differential Cytotoxicity of Corticosteroids on Human Mesenchymal Stem Cells. Clin Orthop Relat Res 473, 1155–1164 (2015). https://doi.org/10.1007/s11999-014-3925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3925-y

Keywords

Navigation