Skip to main content

Bone Marrow Aspirate Concentrate and Platelet-rich Plasma Enhanced Bone Healing in Distraction Osteogenesis of the Tibia



During lower limb lengthening, poor bone regeneration is a devastating complication. Several local or systemic applications have been used to promote osteogenesis, and biologic stimulations are gaining attention, but their utility has not been proven in this setting.


In patients undergoing bilateral tibial lengthening, we compared those receiving an osteotomy site injection of autologous bone marrow aspirate concentrate (BMAC) plus platelet-rich plasma (PRP) with those not receiving such an injection in terms of external fixator index (time in external fixation divided by amount of lengthening), full weightbearing index (time until a patient was permitted to do full weightbearing divided by amount of lengthening), four cortical healing indexes (time until each cortical union divided by amount of lengthening), and callus shape and type.


Twenty-two patients (44 tibias) undergoing bilateral tibial lengthening enrolled in this randomized trial. Two patients were excluded, one due to insufficient radiographic evaluation and one who was lost to followup, leaving 20 patients (40 segments) for inclusion. Ten patients (20 segments) received BMAC combined with PRP injection (treatment group) and 10 patients (20 segments) received no injection (control group). All patients underwent stature lengthening for familial short stature with the lengthening over nail technique. Autologous BMAC combined with PRP was injected at the tibial osteotomy site at the end of the index surgery. Mean distraction rates were similar between groups (0.75 mm/day in the treatment group versus 0.72 mm/day in the control group; p = 0.24). Full weightbearing was permitted when we observed radiographic evidence of healing at two cortices; this assessment was made by the surgeon who was blinded to the treatment each patient received. Minimum followup was 24 months (mean, 28 months; range, 24–34 months).


There was no difference in mean external fixator index between groups. However, mean cortical healing indexes (anterior/posterior/medial/lateral) were 1.14/0.81/0.96/0.88 months/cm in the treatment group and 1.47/1.26/1.42/1.22 months/cm in the control group (all p < 0.001), showing faster healing in the treatment group at each cortex. Full weightbearing was permitted earlier in the treatment group than in the control group (index: 0.99 months/cm and 1.38 months/cm, respectively, p < 0.001). Callus shape and type were not different between groups.


Autologous BMAC combined with PRP injection at the osteotomy site helped improve bone healing in distraction osteogenesis of the tibia, although the effect size was small.

Level of Evidence

Level I, therapeutic study. See Instructions for Authors for a complete description of levels of evidence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2A–D
Fig. 3A–J
Fig. 4A–J


  1. 1.

    Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet rich plasma in rabbit cranial defects: a pilot study. J Oral Maxillofac Surg. 2002;60:1176–1181.

    PubMed  Article  Google Scholar 

  2. 2.

    Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants. 1999;14:529–535.

    CAS  PubMed  Google Scholar 

  3. 3.

    Anitua E, Andia I, Ardanza B. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91:4–15.

    CAS  PubMed  Google Scholar 

  4. 4.

    Arora NS, Ramanayake T, Ren YF, Romanos GE. Platelet-rich plasma in sinus augmentation procedures: a systematic literature review. Part II. Implant Dent. 2010;19:145–157.

    PubMed  Article  Google Scholar 

  5. 5.

    Arpornmaeklong P, Kochel M, Depprich R, Kubler NR, Wurzler KK. Influence of platelet rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells: an in vitro study. Int J Oral Maxillofac Surg. 2004;33:60–70.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Bail H, Raschke MJ, Kolbeck SF, Krummrey G, Windhagen HJ, Weiler A, Raun K, Mosekilde LI, Haas NP. Recombinant species-specific growth hormone increases hard callus formation in distraction osteogenesis. Bone. 2002;30:117–124.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Batista MA, Leivas TP, Rodrigues CJ, Arenas GC, Belitardo DR, Guarniero R. Comparison between the effects of platelet-rich plasma and bone marrow concentrate on defect consolidation in the rabbit tibia. Clinics. 2011;66:1787–1792.

    PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    Becker S, Maissen O, Ponomarev I, Stoll T, Rahn B, Wilke I. Osteopromotion by a beta-tricalcium phosphate/bone marrow hybrid implant for use in spine surgery. Spine (Phila Pa 1976). 2006;31:11–17.

    Google Scholar 

  9. 9.

    Burkhart KJ, Rommens PM. Intramedullary application of bone morphogenetic protein in the management of a major bone defect after an Ilizarov procedure. J Bone Joint Surg Br. 2008;90:806–809.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp. 2003;249:133–143.

    PubMed  Article  Google Scholar 

  11. 11.

    Dallari D, Fini M, Stagni C, Torricelli P, Nicoli Aldini N, Giavaresi G. In vitro study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination. J Orthop Res. 2006;24:877–888.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    De Deyne PG, Hayatsu K, Meyer R, Paley D, Herzenberg JE. Muscle regeneration and fiber-type transformation during distraction osteogenesis. J Orthop Res. 1999;17:560–570.

    PubMed  Article  Google Scholar 

  13. 13.

    Fang TD, Salim A, Xia W. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 2005;20:1114–1124.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med. 2009;37:2259–2272.

    PubMed  Article  Google Scholar 

  15. 15.

    Gandhi A, Doumas C, O’Connor JP. The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone. 2006;38:540–546.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Gebauer D, Correl J. Pulsed low-intensity ultrasound: a new salvage procedure for delayed unions and nonunions after leg lengthening in children. J Pediatr Orthop. 2005;25:750–754.

    PubMed  Article  Google Scholar 

  17. 17.

    Greenwald JA, Luchs JS, Mehrara BJ, Spector JA, McCarthy JG, Longaker MT. Pumping the regenerate: an evaluation of oscillating distraction osteogenesis in the rodent mandible. Ann Plast Surg. 2000;44:516–521.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Gruber R, Karreth F, Fischer MB, Watzek G. Platelet released supernatants stimulate formation of osteoclast-like cells through a prostaglandin/RANKL dependent mechanism. Bone. 2002;30:726–732.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Haque T, Amako M, Nakada S, Lauzier D, Hamdy RC. An immunohistochemical analysis of the temporal and spatial expression of growth factors FGF 1, 2 and 18, IGF 1 and 2, and TGFbeta1 during distraction osteogenesis. Histol Histopathol. 2007;22:119–128.

    CAS  PubMed  Google Scholar 

  20. 20.

    Hisatome T, Yasunaga Y, Yanada S, Tabata Y, Ikada Y, Ochi M. Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials. 2005;26:4550–4556.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Ilizarov GA. The tension-stress effect on the genesis and growth of tissue. Part I. The influence of stability of fixation and soft-tissue prevention. Clin Orthop Relat Res. 1989;238:249–281.

    PubMed  Google Scholar 

  22. 22.

    Ilizarov GA. The tension-stress effect on the genesis and growth of tissue. Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;239:263–285.

    PubMed  Google Scholar 

  23. 23.

    Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;250:8–26.

    PubMed  Google Scholar 

  24. 24.

    Ilizarov GA. The principles of the Ilizarov method. 1988. Bull Hosp Jt Dis. 1997;56:49–53.

    CAS  PubMed  Google Scholar 

  25. 25.

    Jacobsen KA, Al-Aql ZS, Wan C. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res. 2008;23:596–609.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Jager M, Jelinek EM, Wess KM, Scharfstadt A, Jacobson M, Kevy SV, Krauspe R. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4:34–43.

    PubMed  Article  Google Scholar 

  27. 27.

    Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg. 2005;63:362–369.

    PubMed  Article  Google Scholar 

  28. 28.

    Kawasumi M, Kitoh H, Siwicka KA, Ishiguro N. The effect of the platelet concentration in platelet-rich plasma gel on the regeneration of bone. J Bone Joint Surg Br. 2008;90:966–972.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Kenawey M, Krettek C, Liodakis E, Meller R, Hankemeier S. Insufficient bone regenerate after intramedullary femoral lengthening. Clin Orthop Relat Res. 2011;469:264–273.

    PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N. Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop. 2007;27:629–634.

    PubMed  Article  Google Scholar 

  31. 31.

    Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the lone bone. Bone. 2007;40:522–528.

    PubMed  Article  Google Scholar 

  32. 32.

    Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound: a multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am. 1997;79:961–973.

    CAS  PubMed  Google Scholar 

  33. 33.

    Latalski M, Elbatrawy YA, Thabet AM, Gregosiewicz A, Raganowicz T, Fatyga M. Enhancing bone healing during distraction osteogenesis with platelet-rich plasma. Injury. 2011;42:821–824.

    PubMed  Article  Google Scholar 

  34. 34.

    Li R, Saleh M, Yang L, Couton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24:339–347.

    PubMed  Article  Google Scholar 

  35. 35.

    Lindsey CA, Makarov MR, Shoemaker S, Birch JG, Buschang PH, Cherkashin AM, Welch RD, Samchukov ML. The effect of the amount of limb lengthening on skeletal muscle. Clin Orthop Relat Res. 2002;402:278–287.

    PubMed  Article  Google Scholar 

  36. 36.

    Little DG, Smith NC, Williams PR, Briody JN, Bilston LE, Smith EJ, Gardiner EM, Cowell CT. Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis. J Bone Miner Res. 2003;18:1300–1307.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Malard O, Guicheux J, Bouler JM. Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone. 2005;36:323–330.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:225–228.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Mehta S, Watson T. Platelet rich concentrate: basic science and current clinical applications. J Orthop Trauma. 2008;225:433–438.

    Google Scholar 

  40. 40.

    Mizuta H, Nakamura E, Kudo S, Maeda T, Takagi K. Greater frequency of distraction accelerates bone formation in open-wedge proximal tibial osteotomy with hemicallotasis. Acta Orthop Scand. 2004;75:588–593.

    PubMed  Article  Google Scholar 

  41. 41.

    Mofid MM, Inoue N, Atabey A, Marti G, Chao E, Manson PN, Vander Kolk CA. Callus stimulation in distraction osteogenesis. Plast Reconstr Surg. 2002;109:1621–1629.

    PubMed  Article  Google Scholar 

  42. 42.

    Popkov D, Popkov A, Haumont T, Journeau P, Lascombes P. Flexible intramedullary nail use in limb lengthening. J Pediatr Orthop. 2010;30:910–918.

    PubMed  Article  Google Scholar 

  43. 43.

    Ramune A, Thomsen JS, Eckardt H, Bundgaard KG, Lind M, Hvid I. Parathyroid hormone PTH (1–34) increases the volume, mineral content, and mechanical properties of regenerated mineralizing tissue after distraction osteogenesis in rabbits. Acta Orthop. 2009;80:716–723.

    Article  Google Scholar 

  44. 44.

    Raschke MJ, Bail H, Windhagen HJ, Kolbeck SF, Weiler A, Raun K, Kappelgard A, Skiaerbaek C, Haas NP. Recombinant growth hormone accelerates bone regenerate consolidation in distraction osteogenesis. Bone. 1999;24:81–88.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Richards M, Huibregtse BA, Caplan AT, Goulet JA, Goldstein SA. Marrow-derived progenitor cell injections enhance new bone formation during distraction. J Orthop Res. 1999;17:900–908.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Sabharwal S. Enhancement of bone formation during distraction osteogenesis: pediatric applications. J Am Acad Orthop Surg. 2011;19:101–111.

    PubMed  Google Scholar 

  47. 47.

    Sauerbier S, Rickert D, Gutwald R, Nagursky H, Oshima T. Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial-per-protocol analysis. Tissue Eng Part A. 2001;17:2187–2197.

    Article  Google Scholar 

  48. 48.

    Shanaman R, Filstein MR, Danesh-Meyer MJ. Localized ridge augmentation using GBR and platelet-rich plasma: case reports. Int J Periodontics Restorative Dent. 2001;21:345–355.

    CAS  PubMed  Google Scholar 

  49. 49.

    Shen XC, Aronson J. Changes in biomechanical properties of muscle following tibial lengthening in rat. Trans Orthop Res Soc. 1993;18:379.

    Google Scholar 

  50. 50.

    Shimazaki A, Inui K, Azuma Y, Nishimura N, Yamano Y. Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbit. J Bone Joint Surg Br. 200;7:1077–1082.

  51. 51.

    Simpson AH, Williams PE, Kyberd P, Goldspink G, Kenwright J. The response of muscle to leg lengthening. J Bone Joint Surg Br. 1995;77:630–636.

    CAS  PubMed  Google Scholar 

  52. 52.

    Siwicka KA, Kitoh H, Kawasumi M, Ishiguro N. Spatial and temporal distribution of growth factors receptors in the callus: implications for improvement of distraction osteogenesis. Nagoya J Med Sci. 2011;73:117–127.

    CAS  PubMed  Google Scholar 

  53. 53.

    Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18:980–982.

    CAS  PubMed  Google Scholar 

  54. 54.

    Sun XT, Easwar TR, Stephen M, Kim SJ, Song HR. Comparative study of callus progression in limb lengthening with or without intramedullary nail with reference to the pixel value ratio and the Ru Li’s classification. Arch Orthop Trauma Surg. 2011;131:1333–1340.

    PubMed  Article  Google Scholar 

  55. 55.

    Takamine Y, Tsuchiya H, Kitakoji T. Distraction osteogenesis enhanced by osteoblast-like cells and collagen gel. Clin Orthop Relat Res. 2002;399:240–246.

    PubMed  Article  Google Scholar 

  56. 56.

    Tavakoli K, Yu Y, Shahidi S, Bonar F, Walsh WR, Poole MD. Expression of growth factors in the mandibular distraction zone: a sheep study. Br J Plast Surg. 1999;52:434–439.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Thor A, Wannfors K, Sennerby L, Rasmusson L. Reconstruction of the severely resorbed maxilla with autogenous bone, platelet rich plasma and implant: 1-year results of a controlled prospective 5-year study. Clin Implant Dent Relat Res. 2005;7:209–220.

    PubMed  Article  Google Scholar 

  58. 58.

    Wang K, Edwards E. Intramedullary skeletal kinetic distractor in the treatment of leg length discrepancy: a review of 16 cases and analysis of complications. J Orthop Trauma. 2013;26:138–144.

    Article  Google Scholar 

  59. 59.

    Weiss S, Zimmermann G, Baumgart R, Kasten P, Bidlingmaier M, Henle P. Systemic regulation of angiogenesis and matrix degradation in bone regeneration—distraction osteogenesis compared to rigid fracture healing. Bone. 2005;37:781–790.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Yoshitaka E, Wakitani S, Naka Y, Nakamura H, Takaoka K. An injectable composite material containing bone morphogenetic protein-2 shortens the period of distraction osteogenesis in vivo. J Orthop Res. 2011;29:452–456.

    Article  Google Scholar 

Download references


We thank Dr. Hae Ryong Song for his valuable comments on human tibial lengthening, Jung Ho Park, our physical therapist, for his enthusiastic and cooperative work for our patients.

Author information



Corresponding author

Correspondence to Dong Hoon Lee MD, PhD.

Additional information

Each author certifies that he or she, or a member of his or her immediate family, has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research ® editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research ® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA approval status, of any drug or device before clinical use.

Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that the informed consent for participation in the study was obtained.

About this article

Cite this article

Lee, D.H., Ryu, K.J., Kim, J.W. et al. Bone Marrow Aspirate Concentrate and Platelet-rich Plasma Enhanced Bone Healing in Distraction Osteogenesis of the Tibia. Clin Orthop Relat Res 472, 3789–3797 (2014).

Download citation


  • Bone Marrow Cell
  • External Fixator
  • Distraction Osteogenesis
  • Osteotomy Site
  • Callus Type