Clinical Orthopaedics and Related Research®

, Volume 471, Issue 3, pp 915–925 | Cite as

Lipid-functionalized Dextran Nanosystems to Overcome Multidrug Resistance in Cancer: A Pilot Study

  • Eisuke Kobayashi
  • Arun K. Iyer
  • Francis J. Hornicek
  • Mansoor M. Amiji
  • Zhenfeng Duan
Symposium: Highlights from the First Combined 2011 Meeting of the Musculoskeletal Tumor Society and Connective Tissue Oncology Society

Abstract

Background

The toxicity of anticancer agents and the difficulty in delivering drugs selectively to tumor cells pose a challenge in overcoming multidrug resistance (MDR). Recently, nanotechnology has emerged as a powerful tool in addressing some of the barriers to drug delivery, including MDR in cancer, by utilizing alternate routes of cellular entry and targeted delivery of drugs and genes. However, it is unclear whether doxorubicin (Dox) can be delivered by nanotechnologic approaches.

Questions/Purposes

We asked whether (1) Dox-loaded lipid-functionalized dextran-based biocompatible nanoparticles (Dox/NP) can reverse MDR, (2) Dox/NP has more potent cytotoxic effect on MDR tumors than poly(ethylene glycol)-modified liposomal Dox (PLD), and (3) multidrug resistance protein 1 (MDR1) small interfering RNA loaded in these nanoparticles (siMDR1/NP) can modulate MDR.

Methods

To create stable Dox/NP and siMDR1/NP, we used two different lipid-modified dextran derivatives. The effect of Dox or Dox/NP was tested on drug-sensitive osteosarcoma (KHOS) and ovarian cancer (SKOV-3) cell cultures in triplicate and their respective MDR counterparts KHOSR2 and SKOV-3TR in triplicate. We determined the effects on drug retention, transfection efficacy of siMDR1/NP, and P-glycoprotein expression and the antiproliferative effect between Dox/NP and PLD in MDR tumor cells.

Results

Fluorescence microscopy revealed efficient uptake of the Dox/NP and fluorescently tagged siMDR1/NP. Dox/NP showed five- to 10-fold higher antiproliferative activity at the 50% inhibitory concentration than free Dox in tumor cells. Dox/NP showed twofold higher activity than PLD in MDR tumor cells. siMDR1/NP (100 nM) suppressed P-glycoprotein expression in KHOSR2.

Conclusions

Dextran-lipid nanoparticles are a promising platform for delivering Dox and siRNAs.

Clinical Relevance

Biocompatible dextran-based nanoparticles that are directly translatable to clinical medicine may lead to new potential therapeutics for reversing MDR in patients with cancer.

References

  1. 1.
    Abeylath SC, Amiji MM. “Click” synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg Med Chem. 2011;19:6167–6173.PubMedCrossRefGoogle Scholar
  2. 2.
    Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–516.PubMedCrossRefGoogle Scholar
  3. 3.
    Baldini N, Scotlandi K, Barbanti-Brodano G, Manara MC, Maurici D, Bacci G, Bertoni F, Picci P, Sottili S, Campanacci M, et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333:1380–1385.PubMedCrossRefGoogle Scholar
  4. 4.
    Belpomme D, Gauthier S, Pujade-Lauraine E, Facchini T, Goudier MJ, Krakowski I, Netter-Pinon G, Frenay M, Gousset C, Marie FN, Benmiloud M, Sturtz F. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann Oncol. 2000;11:1471–1476.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhavsar MD, Amiji MM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release. 2007;119:339–348.PubMedCrossRefGoogle Scholar
  6. 6.
    Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M, Winkelmann W, Zoubek A, Jurgens H, Winkler K. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776–790.PubMedCrossRefGoogle Scholar
  7. 7.
    Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991;66:85–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009;5:2673–2677.PubMedCrossRefGoogle Scholar
  9. 9.
    Devalapally H, Duan Z, Seiden MV, Amiji MM. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res. 2008;14:3193–3203.PubMedCrossRefGoogle Scholar
  10. 10.
    Dillen K, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314:72–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther. 2004;3:833–838.PubMedGoogle Scholar
  12. 12.
    Ferrandina G, Corrado G, Licameli A, Lorusso D, Fuoco G, Pisconti S, Scambia G. Pegylated liposomal doxorubicin in the management of ovarian cancer. Ther Clin Risk Manag. 2010;6:463–483.PubMedGoogle Scholar
  13. 13.
    Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10:147–156.PubMedCrossRefGoogle Scholar
  14. 14.
    Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;8:705–718.PubMedGoogle Scholar
  15. 15.
    Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010;596:47–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Han HK. Role of transporters in drug interactions. Arch Pharm Res. 2011;34:1865–1877.PubMedCrossRefGoogle Scholar
  17. 17.
    Hindenburg AA, Baker MA, Gleyzer E, Stewart VJ, Case N, Taub RN. Effect of verapamil and other agents on the distribution of anthracyclines and on reversal of drug resistance. Cancer Res. 1987;47:1421–1425.PubMedGoogle Scholar
  18. 18.
    Hornicek FJ, Gebhardt MC, Wolfe MW, Kharrazi FD, Takeshita H, Parekh SG, Zurakowski D, Mankin HJ. P-glycoprotein levels predict poor outcome in patients with osteosarcoma. Clin Orthop Relat Res. 2000;373:11–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812–818.PubMedCrossRefGoogle Scholar
  20. 20.
    Kandel RA, Campbell S, Noble-Topham S, Bell R, Andrulis IL. Correlation of p-glycoprotein detection by immunohistochemistry with mdr-1 mRNA levels in osteosarcomas: pilot study. Diagn Mol Pathol. 1995;4:59–65.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaye SB. Reversal of drug resistance in ovarian cancer: where do we go from here? J Clin Oncol. 2008;26:2616–2618.PubMedCrossRefGoogle Scholar
  22. 22.
    Keizer HG, Schuurhuis GJ, Broxterman HJ, Lankelma J, Schoonen WG, van Rijn J, Pinedo HM, Joenje H. Correlation of multidrug resistance with decreased drug accumulation, altered subcellular drug distribution, and increased P-glycoprotein expression in cultured SW-1573 human lung tumor cells. Cancer Res. 1989;49:2988–2993.PubMedGoogle Scholar
  23. 23.
    Klimecki WT, Futscher BW, Grogan TM, Dalton WS. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood. 1994;83:2451–2458.PubMedGoogle Scholar
  24. 24.
    Kolitz JE, George SL, Dodge RK, Hurd DD, Powell BL, Allen SL, Velez-Garcia E, Moore JO, Shea TC, Hoke E, Caligiuri MA, Vardiman JW, Bloomfield CD, Larson RA. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol. 2004;22:4290–4301.PubMedCrossRefGoogle Scholar
  25. 25.
    Lamendola DE, Duan Z, Yusuf RZ, Seiden MV. Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res. 2003;63:2200–2205.PubMedGoogle Scholar
  26. 26.
    Licht T, Pastan I, Gottesman M, Herrmann F. P-glycoprotein-mediated multidrug resistance in normal and neoplastic hematopoietic cells. Ann Hematol. 1994;69:159–171.PubMedCrossRefGoogle Scholar
  27. 27.
    MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, Stillman B, Graham RM, Brahmbhatt H. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol. 2009;27:643–651.PubMedCrossRefGoogle Scholar
  28. 28.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.PubMedCrossRefGoogle Scholar
  29. 29.
    Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4:4539–4550.PubMedCrossRefGoogle Scholar
  30. 30.
    Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm. 2010;8:185–203.PubMedCrossRefGoogle Scholar
  31. 31.
    Minko T, Kopeckova P, Pozharov V, Kopecek J. HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release. 1998;54:223–233.PubMedCrossRefGoogle Scholar
  32. 32.
    Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–150.PubMedCrossRefGoogle Scholar
  33. 33.
    Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, Amantea MA, Kaplan LD. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol. 1996;36:55–63.PubMedGoogle Scholar
  34. 34.
    O’Malley DM, Richardson DL, Rheaume PS, Salani R, Eisenhauer EL, McCann GA, Fowler JM, Copeland LJ, Cohn DE, Backes FJ. Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecol Oncol. 2011;121:269–272.PubMedCrossRefGoogle Scholar
  35. 35.
    Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Poveda A, Lopez-Pousa A, Martin J, Del Muro JG, Bernabe R, Casado A, Balana C, Sanmartin O, Menendez MD, Escudero P, Cruz J, Belyakova E, Menendez D, Buesa JM. Phase II clinical trial with pegylated liposomal doxorubicin (Caelyx®/Doxil®) and quality of life evaluation (EORTC QLQ-C30) in adult patients with advanced soft tissue sarcomas: a study of the Spanish Group for Research in Sarcomas (GEIS). Sarcoma. 2005;9:127–132.PubMedCrossRefGoogle Scholar
  37. 37.
    Riganti C, Voena C, Kopecka J, Corsetto PA, Montorfano G, Enrico E, Costamagna C, Rizzo AM, Ghigo D, Bosia A. Liposome-encapsulated doxorubicin reverses drug resistance by inhibiting P-glycoprotein in human cancer cells. Mol Pharm. 2011;8:683–700.PubMedCrossRefGoogle Scholar
  38. 38.
    Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond). 2008;3:761–776.CrossRefGoogle Scholar
  39. 39.
    Schuurhuis GJ, Broxterman HJ, Cervantes A, van Heijningen TH, de Lange JH, Baak JP, Pinedo HM, Lankelma J. Quantitative determination of factors contributing to doxorubicin resistance in multidrug-resistant cells. J Natl Cancer Inst. 1989;81:1887–1892.PubMedCrossRefGoogle Scholar
  40. 40.
    Schwartz CL, Gorlick R, Teot L, Krailo M, Chen Z, Goorin A, Grier HE, Bernstein ML, Meyers P. Multiple drug resistance in osteogenic sarcoma: INT0133 from the Children’s Oncology Group. J Clin Oncol. 2007;25:2057–2062.PubMedCrossRefGoogle Scholar
  41. 41.
    Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat. 2011;14:150–163.PubMedCrossRefGoogle Scholar
  42. 42.
    Shnyder SD, Hayes AJ, Pringle J, Archer CW. P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma. Br J Cancer. 1998;78:757–759.PubMedCrossRefGoogle Scholar
  43. 43.
    Sikic BI. Pharmacologic approaches to reversing multidrug resistance. Semin Hematol. 1997;34:40–47.PubMedGoogle Scholar
  44. 44.
    Smeets M, Raymakers R, Vierwinden G, Pennings A, van de Locht L, Wessels H, Boezeman J, de Witte T. A low but functionally significant MDR1 expression protects primitive haemopoietic progenitor cells from anthracycline toxicity. Br J Haematol. 1997;96:346–355.PubMedCrossRefGoogle Scholar
  45. 45.
    Sonneveld P, Suciu S, Weijermans P, Beksac M, Neuwirtova R, Solbu G, Lokhorst H, van der Lelie J, Dohner H, Gerhartz H, Segeren CM, Willemze R, Lowenberg B. Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD) compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914). Br J Haematol. 2001;115:895–902.PubMedCrossRefGoogle Scholar
  46. 46.
    Sugawara I, Kataoka I, Morishita Y, Hamada H, Tsuruo T, Itoyama S, Mori S. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res. 1988;48:1926–1929.PubMedGoogle Scholar
  47. 47.
    Sun HW, Wu C, Tan HY, Wang QS. Combination DLL4 with Jagged1-siRNA can enhance inhibition of the proliferation and invasiveness activity of human gastric carcinoma by Notch1/VEGF pathway. Hepatogastroenterology. 2012;59:924–929.PubMedGoogle Scholar
  48. 48.
    Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, Milane L, Amiji MM, Duan Z. Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One. 2010;5:e10764.PubMedCrossRefGoogle Scholar
  49. 49.
    Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM, Duan Z. Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer. 2009;9:399.PubMedCrossRefGoogle Scholar
  50. 50.
    Talekar M, Kendall J, Denny W, Garg S. Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs. 2011;22:949–962.PubMedCrossRefGoogle Scholar
  51. 51.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–160.PubMedCrossRefGoogle Scholar
  52. 52.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181–3198.PubMedCrossRefGoogle Scholar
  53. 53.
    van der Valk P, van Kalken CK, Ketelaars H, Broxterman HJ, Scheffer G, Kuiper CM, Tsuruo T, Lankelma J, Meijer CJ, Pinedo HM, et al. Distribution of multi-drug resistance-associated P-glycoprotein in normal and neoplastic human tissues: analysis with 3 monoclonal antibodies recognizing different epitopes of the P-glycoprotein molecule. Ann Oncol. 1990;1:56–64.PubMedGoogle Scholar
  54. 54.
    van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res. 2007;67:4843–4850.PubMedCrossRefGoogle Scholar
  55. 55.
    van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24:1405–1414.PubMedCrossRefGoogle Scholar
  56. 56.
    Whelan JS, Jinks RC, McTiernan A, Sydes MR, Hook JM, Trani L, Uscinska B, Bramwell V, Lewis IJ, Nooij MA, van Glabbeke M, Grimer RJ, Hogendoorn PC, Taminiau AH, Gelderblom H. Survival from high-grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann Oncol. 2012;23:1607–1616.PubMedCrossRefGoogle Scholar
  57. 57.
    Willingham MC, Cornwell MM, Cardarelli CO, Gottesman MM, Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: effects of verapamil and other drugs. Cancer Res. 1986;46:5941–5946.PubMedGoogle Scholar
  58. 58.
    Wunder JS, Bull SB, Aneliunas V, Lee PD, Davis AM, Beauchamp CP, Conrad EU, Grimer RJ, Healey JH, Rock MJ, Bell RS, Andrulis IL. MDR1 gene expression and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 2000;18:2685–2694.PubMedGoogle Scholar
  59. 59.
    Zheng L, Ren JQ, Li H, Kong ZL, Zhu HG. Downregulation of wild-type p53 protein by HER-2/neu mediated PI3 K pathway activation in human breast cancer cells: its effect on cell proliferation and implication for therapy. Cell Res. 2004;14:497–506.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2012

Authors and Affiliations

  • Eisuke Kobayashi
    • 1
    • 2
    • 3
  • Arun K. Iyer
    • 4
  • Francis J. Hornicek
    • 1
    • 2
    • 3
  • Mansoor M. Amiji
    • 4
  • Zhenfeng Duan
    • 1
    • 2
    • 3
  1. 1.Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue OncologyMassachusetts General HospitalBostonUSA
  2. 2.Department of Orthopaedic SurgeryMassachusetts General HospitalBostonUSA
  3. 3.Harvard Medical SchoolMassachusetts General HospitalBostonUSA
  4. 4.Department of Pharmaceutical Sciences, School of PharmacyNortheastern UniversityBostonUSA

Personalised recommendations