Skip to main content

Advertisement

Log in

Does Norepinephrine Influence Pain Behavior Mediated by Dorsal Root Ganglia?: A Pilot Study

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Postganglionic neurons in the sympathetic nervous system reportedly are involved in lumbar radicular pain and release norepinephrine (NE), a neurotransmitter. Increased numbers of sympathetic nerve fibers have been found in dorsal root ganglion (DRG) neurons in a root constriction model. Whether this is a reasonable model for pain, however, is unclear

Questions/purposes

We asked whether: (1) painful behaviors occurred in the root constriction model; (2) NE enhanced the excitability of DRG neurons in the root constriction model; and (3) which adrenoceptors were related to the mediation of the NE effects.

Methods

The L5 root was sutured proximal to the DRG as the root constriction model. Behavioral tests were performed until 28 days after surgery. At 10 to 14 days after the root constriction, DRG neurons were quickly excised and digested with collagenase for electrophysiologic studies. Action potentials were recorded from single DRG neurons using a whole-cell patch clamp technique. NE (10 μmol/L) was directly applied to the DRG neurons. The adrenergic sensitivity was examined in combination with antagonists.

Results

The rats with root constriction exhibited painful behavior. NE increased the excitability of DRG neurons in the root constriction model. The effects of NE were inhibited by pretreatment with an α-antagonist and α2-antagonist but not an α1-antagonist.

Conclusions

Our observations suggest NE plays an important role in generating lumbar radicular pain mainly via α2-adrenoceptors.

Clinical Relevance

An α2-antagonist may be an appropriate agent for trials to treat lumbar radicular pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3A–B
Fig. 4A–B
Fig. 5A–B

Similar content being viewed by others

References

  1. Abdulla FA, Smith PA. Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol. 2001;85:630–643.

    PubMed  CAS  Google Scholar 

  2. Atlas SJ, Deyo RA, Keller RB, Chapin AM, Patrick DL, Long JM, Singer DE. The Maine Lumbar Spine Study, Part II. 1-year outcomes of surgical and nonsurgical management of sciatica. Spine (Phila Pa 1976). 1996;21:1777–1786.

    Article  CAS  Google Scholar 

  3. Atlas SJ, Keller RB, Chang Y, Deyo RA, Singer DE. Surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: five-year outcomes from the Maine Lumbar Spine Study. Spine (Phila Pa 1976). 2001;26:1179–1187.

    Article  CAS  Google Scholar 

  4. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  PubMed  CAS  Google Scholar 

  5. Birder LA, Perl ER. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol. 1999;515 (Pt 2):533–542.

    Article  PubMed  CAS  Google Scholar 

  6. Boas RA. Sympathetic nerve blocks: in search of a role. Reg Anesth Pain Med. 1998;23:292–305.

    PubMed  CAS  Google Scholar 

  7. Chen Y, Michaelis M, Janig W, Devor M. Adrenoreceptor subtype mediating sympathetic-sensory coupling in injured sensory neurons. J Neurophysiol. 1996;76:3721–3730.

    PubMed  CAS  Google Scholar 

  8. Cho HJ, Kim DS, Lee NH, Kim JK, Lee KM, Han KS, Kang YN, Kim KJ. Changes in the alpha 2-adrenergic receptor subtypes gene expression in rat dorsal root ganglion in an experimental model of neuropathic pain. Neuroreport. 1997;8:3119–3122.

    Article  PubMed  CAS  Google Scholar 

  9. Chung K, Chung JM. Sympathetic sprouting in the dorsal root ganglion after spinal nerve ligation: evidence of regenerative collateral sprouting. Brain Res. 2001;895:204–212.

    Article  PubMed  CAS  Google Scholar 

  10. Chung K, Kim HJ, Na HS, Park MJ, Chung JM. Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain. Neurosci Lett. 1993;162:85–88.

    Article  PubMed  CAS  Google Scholar 

  11. Devor M, Janig W, Michaelis M. Modulation of activity in dorsal root ganglion neurons by sympathetic activation in nerve-injured rats. J Neurophysiol. 1994;71:38–47.

    PubMed  CAS  Google Scholar 

  12. Goldstein DS. Plasma catecholamines and essential hypertension: an analytical review. Hypertension. 1983;5:86–99.

    PubMed  CAS  Google Scholar 

  13. Harper AA, Lawson SN, Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol. 1985;359:31–46.

    PubMed  CAS  Google Scholar 

  14. Hashizume H, DeLeo JA, Colburn RW, Weinstein JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine (Phila PA 1976). 2000;25:1206–1217.

    Article  CAS  Google Scholar 

  15. Honma Y, Yamakage M, Ninomiya T. Effects of adrenergic stimulus on the activities of Ca2 + and K + channels of dorsal root ganglion neurons in a neuropathic pain model. Brain Res. 1999;832:195–206.

    Article  PubMed  CAS  Google Scholar 

  16. Hu SJ, Xing JL. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain. 1998;77:15–23.

    Article  PubMed  CAS  Google Scholar 

  17. Kawasaki Y, Kumamoto E, Furue H, Yoshimura M. Alpha 2 adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology. 2003;98:682–689.

    Article  PubMed  CAS  Google Scholar 

  18. Khoromi S, Cui L, Nackers L, Max MB. Morphine, nortriptyline and their combination vs. placebo in patients with chronic lumbar root pain. Pain. 2007;130:66–75.

    CAS  Google Scholar 

  19. Khoromi S, Patsalides A, Parada S, Salehi V, Meegan JM, Max MB. Topiramate in chronic lumbar radicular pain. J Pain. 2005;6:829–836.

    Article  PubMed  CAS  Google Scholar 

  20. Kim SH, Chung JM. Sympathectomy alleviates mechanical allodynia in an experimental animal model for neuropathy in the rat. Neurosci Lett. 1991;134:131–134.

    Article  PubMed  CAS  Google Scholar 

  21. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50:355–363.

    Article  PubMed  CAS  Google Scholar 

  22. Kim YI, Na HS, Kim SH, Han HC, Yoon YW, Sung B, Nam HJ, Shin SL, Hong SK. Cell type-specific changes of the membrane properties of peripherally-axotomized dorsal root ganglion neurons in a rat model of neuropathic pain. Neuroscience. 1998;86:301–309.

    Article  PubMed  CAS  Google Scholar 

  23. Kirita T, Takebayashi T, Mizuno S, Takeuchi H, Kobayashi T, Fukao M, Yamashita T, Tohse N. Electrophysiologic changes in dorsal root ganglion neurons and behavioral changes in a lumbar radiculopathy model. Spine. 2007;32:E65–72.

    Article  PubMed  Google Scholar 

  24. Lee DH, Katner J, Iyengar S, Lodge D. The effect of lumbar sympathectomy on increased tactile sensitivity in spinal nerve ligated rats. Neurosci Lett. 2001;298:99–102.

    Article  PubMed  CAS  Google Scholar 

  25. Leem JW, Gwak YS, Nam TS, Paik KS. Involvement of alpha2-adrenoceptors in mediating sympathetic excitation of injured dorsal root ganglion neurons in rats with spinal nerve ligation. Neurosci Lett. 1997;234:39–42.

    Article  PubMed  CAS  Google Scholar 

  26. Ma C, Greenquist KW, Lamotte RH. Inflammatory mediators enhance the excitability of chronically compressed dorsal root ganglion neurons. J Neurophysiol. 2006;95:2098–2107.

    Article  PubMed  CAS  Google Scholar 

  27. Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, White FA, LaMotte RH. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol. 2003;89:1588–1602.

    Article  PubMed  Google Scholar 

  28. McLachlan EM, Janig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363:543–546.

    Article  PubMed  CAS  Google Scholar 

  29. Michaelis M, Devor M, Janig W. Sympathetic modulation of activity in rat dorsal root ganglion neurons changes over time following peripheral nerve injury. J Neurophysiol. 1996;76:753–763.

    PubMed  CAS  Google Scholar 

  30. Mizuno S, Takebayashi T, Kirita T, Tanimoto K, Tohse N, Yamashita T. The effects of the sympathetic nerves on lumbar radicular pain: a behavioural and immunohistochemical study. J Bone Joint Surg Br. 2007;89:1666–1672.

    Article  PubMed  CAS  Google Scholar 

  31. Murata Y, Olmarker K, Takahashi I, Takahashi K, Rydevik B. Effects of lumbar sympathectomy on pain behavioral changes caused by nucleus pulposus-induced spinal nerve damage in rats. Eur Spine J. 2006;15:634–640.

    Article  PubMed  Google Scholar 

  32. Peng PW, Castano ED. Survey of chronic pain practice by anesthesiologists in Canada. Can J Anaesth. 2005;52:383–389.

    Article  PubMed  Google Scholar 

  33. Petersen M, Zhang J, Zhang JM, LaMotte RH. Abnormal spontaneous activity and responses to norepinephrine in dissociated dorsal root ganglion cells after chronic nerve constriction. Pain. 1996;67:391–397.

    Article  PubMed  CAS  Google Scholar 

  34. Ramer MS, Bisby MA. Rapid sprouting of sympathetic axons in dorsal root ganglia of rats with a chronic constriction injury. Pain. 1997;70:237–244.

    Article  PubMed  CAS  Google Scholar 

  35. Ramer MS, French GD, Bisby MA. Wallerian degeneration is required for both neuropathic pain and sympathetic sprouting into the DRG. Pain. 1997;72:71–78.

    Article  PubMed  CAS  Google Scholar 

  36. Scroggs RS, Fox AP. Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol. 1992;445:639–658.

    PubMed  CAS  Google Scholar 

  37. Sekiguchi M, Kobayashi H, Sekiguchi Y, Konno S, Kikuchi S. Sympathectomy reduces mechanical allodynia, tumor necrosis factor-alpha expression, and dorsal root ganglion apoptosis following nerve root crush injury. Spine. 2008;33:1163–1169.

    Article  PubMed  Google Scholar 

  38. Shi TS, Winzer-Serhan U, Leslie F, Hokfelt T. Distribution and regulation of alpha(2)-adrenoceptors in rat dorsal root ganglia. Pain. 2000;84:319–330.

    Article  PubMed  CAS  Google Scholar 

  39. Shinder V, Govrin-Lippmann R, Cohen S, Belenky M, Ilin P, Fried K, Wilkinson HA, Devor M. Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol. 1999;28:743–761.

    Article  PubMed  CAS  Google Scholar 

  40. Song XJ, Zhang JM, Hu SJ, LaMotte RH. Somata of nerve-injured sensory neurons exhibit enhanced responses to inflammatory mediators. Pain. 2003;104:701–709.

    Article  PubMed  CAS  Google Scholar 

  41. Stafford MA, Peng P, Hill DA. Sciatica: a review of history, epidemiology, pathogenesis, and the role of epidural steroid injection in management. Br J Anaesth. 2007;99:461–473.

    Article  PubMed  CAS  Google Scholar 

  42. Stone LS, Broberger C, Vulchanova L, Wilcox GL, Hokfelt T, Riedl MS, Elde R. Differential distribution of alpha2A and alpha2C adrenergic receptor immunoreactivity in the rat spinal cord. J Neurosci. 1998;18:5928–5937.

    PubMed  CAS  Google Scholar 

  43. Stucky CL, Lewin GR. Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci. 1999;19:6497–6505.

    PubMed  CAS  Google Scholar 

  44. Study RE, Kral MG. Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain. 1996;65:235–242.

    Article  PubMed  CAS  Google Scholar 

  45. Takebayashi T, Cavanaugh JM, Cuneyt Ozaktay A, Kallakuri S, Chen C. Effect of nucleus pulposus on the neural activity of dorsal root ganglion. Spine (Phila Pa 1976). 2001;26:940–945.

    Article  CAS  Google Scholar 

  46. Tran KM, Frank SM, Raja SN, El-Rahmany HK, Kim LJ, Vu B. Lumbar sympathetic block for sympathetically maintained pain: changes in cutaneous temperatures and pain perception. Anesth Analg. 2000;90:1396–1401.

    Article  PubMed  CAS  Google Scholar 

  47. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–1635.

    Article  PubMed  CAS  Google Scholar 

  48. Watanabe K, Konno S, Sekiguchi M, Sasaki N, Honda T, Kikuchi S. Increase of 200-kDa neurofilament-immunoreactive afferents in the substantia gelatinosa in allodynic rats induced by compression of the dorsal root ganglion. Spine (Phila Pa 1976). 2007;32:1265–1271.

    Article  Google Scholar 

  49. Xie W, Strong JA, Li H, Zhang JM. Sympathetic sprouting near sensory neurons after nerve injury occurs preferentially on spontaneously active cells and is reduced by early nerve block. J Neurophysiol. 2007;97:492–502.

    Article  PubMed  Google Scholar 

  50. Xie Y, Zhang J, Petersen M, LaMotte RH. Functional changes in dorsal root ganglion cells after chronic nerve constriction in the rat. J Neurophysiol. 1995;73:1811–1820.

    PubMed  CAS  Google Scholar 

  51. Zhang JM, Donnelly DF, Song XJ, Lamotte RH. Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J Neurophysiol. 1997;78:2790–2794.

    PubMed  CAS  Google Scholar 

  52. Zhang JM, Li H, Munir MA. Decreasing sympathetic sprouting in pathologic sensory ganglia: a new mechanism for treating neuropathic pain using lidocaine. Pain. 2004;109:143–149.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang JM, Song XJ, LaMotte RH. An in vitro study of ectopic discharge generation and adrenergic sensitivity in the intact, nerve-injured rat dorsal root ganglion. Pain. 1997;72:51–57.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang JM, Song XJ, LaMotte RH. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol. 1999;82:3359–3366.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Takehito Iwase for performing the behavioral studies and Dr. Takashi Kirita, Dr. Satoshi Mizuno, and Dr. Yoshinori Terashima for technical assistance related to the electrophysiologic experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumasa Tanimoto MD, PhD.

Additional information

One or more of the authors (TT, NT, and TY) have received funding from a research grant for the Grant-in-Aid for Science Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant Number of 19390398) and the JOA-Subsidized Science Project Research 2007-8.

Each author certifies that his or her institution approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at Sapporo Medical University, Sapporo, Japan.

About this article

Cite this article

Tanimoto, K., Takebayashi, T., Kobayashi, T. et al. Does Norepinephrine Influence Pain Behavior Mediated by Dorsal Root Ganglia?: A Pilot Study . Clin Orthop Relat Res 469, 2568–2576 (2011). https://doi.org/10.1007/s11999-011-1798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1798-x

Keywords

Navigation