Clinical Orthopaedics and Related Research®

, Volume 469, Issue 8, pp 2170–2178 | Cite as

Infrared Assessment of Bone Quality: A Review

  • Eleftherios P. Paschalis
  • Richard Mendelsohn
  • Adele L. Boskey
Symposium: Bone Quality: From Bench to Bedside



Bone strength depends on both bone quantity and quality. The former is routinely estimated in clinical settings through bone mineral density measurements but not the latter. Bone quality encompasses the structural and material properties of bone. Although its importance is appreciated, its contribution in determining bone strength has been difficult to precisely quantify partly because it is multifactorial and requires investigation of all bone hierarchical levels. Fourier transform infrared spectroscopy provides one way to explore these levels.


The purposes of our review were to (1) provide a brief overview of Fourier transform infrared spectroscopy as a way to establish bone quality, (2) review the major bone material parameters determined from Fourier transform infrared spectroscopy, and (3) review the role of Fourier transform infrared microspectroscopic analysis in establishing bone quality.


We used the ISI Web of Knowledge database initially to identify articles containing the Boolean term “infrared” AND “bone.” We then focused on articles on infrared spectroscopy in bone-related journals.


Infrared spectroscopy provides information on bone material properties. Their microspectroscopic versions allow one to establish these properties as a function of anatomic location, mineralization extent, and bone metabolic activity. It provides answers pertaining to the contribution of mineral to matrix ratio, mineral maturity, mineral carbonate substitution, and collagen crosslinks to bone strength. Alterations of bone material properties have been identified in disease (especially osteoporosis) not attainable by other techniques.


Infrared spectroscopic analysis is a powerful tool for establishing the important material properties contributing to bone strength and thus has helped better understand changes in fragile bone.


  1. 1.
    Blouin S, Thaler HW, Korninger C, Schmid R, Hofstaetter JG, Zoehrer R, Phipps R, Klaushofer K, Roschger P, Paschalis EP. Bone matrix quality and plasma homocysteine levels. Bone. 2009;44:959–964.PubMedCrossRefGoogle Scholar
  2. 2.
    Blumenthal NC, Betts F, Posner AS. Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Res. 1975;18:81–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Bohic S, Heymann D, Pouezat JA, Gauthier O, Daculsi G. Transmission FT-IR microspectroscopy of mineral phases in calcified tissues. C R Acad Sci III. 1998;321:865–876.PubMedGoogle Scholar
  4. 4.
    Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16:2031–2038.PubMedCrossRefGoogle Scholar
  5. 5.
    Boskey AL, Mendelsohn R. Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc. 2005;38:107–114.PubMedCrossRefGoogle Scholar
  6. 6.
    Boskey AL, Pleshko N, Doty SB, Mendelsohn R. Applications of FT-IR microscopy to the study of mineralization in bone and cartilage. Cell Materials. 1992;2:209–220.Google Scholar
  7. 7.
    Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int. 2009;20:793–800.PubMedCrossRefGoogle Scholar
  8. 8.
    Boyce TM, Bloebaum RD. Cortical aging differences and fracture implications for the human femoral neck. Bone. 1993;14:769–778.PubMedCrossRefGoogle Scholar
  9. 9.
    Bullough P. The tissue diagnosis of metabolic bone disease. Orthop Clin North Am. 1990;21:65–79.PubMedGoogle Scholar
  10. 10.
    Bullough P. Atlas of Orthopaedic Pathology. New York, NY: Gower Medical Publishing; 1992.Google Scholar
  11. 11.
    Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, Hirano T, Johnston CC. Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone. 2003;33:960–969.PubMedCrossRefGoogle Scholar
  12. 12.
    Camacho NP, Rinnerthaler S, Paschalis EP, Mendelsohn R, Boskey AL, Fratzl P. Complementary information on bone ultrastructure from scanning small angle x-ray scattering and Fourier-transform infrared microspectroscopy. Bone. 1999;25:287–293.PubMedCrossRefGoogle Scholar
  13. 13.
    Childs LM, Paschalis EP, Xing L, Dougall WC, Anderson D, Boskey AL, Puzas JE, Rosier RN, O’Keefe RJ, Boyce BF, Schwarz EM. In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 2002;17:192–199.PubMedCrossRefGoogle Scholar
  14. 14.
    Cummings SR. Are patients with hip fractures more osteoporotic? Review of the evidence. Am J Med. 1985;78:487–494.PubMedCrossRefGoogle Scholar
  15. 15.
    Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990;29:3303–3308.PubMedCrossRefGoogle Scholar
  16. 16.
    Dumas P, Jamin N, Teillaud JL, Miller LM, Beccard B. Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss. 2004;126:289–302; discussion 303–311.Google Scholar
  17. 17.
    Durchschlag E, Paschalis EP, Zoehrer R, Roschger P, Fratzl P, Recker R, Phipps R, Klaushofer K. Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate. J Bone Miner Res. 2006;21:1581–1590.PubMedCrossRefGoogle Scholar
  18. 18.
    Einhorn TA. The bone organ system: form and function. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. New York, NY: Academic Press Inc; 1996.Google Scholar
  19. 19.
    Federman S, Miller LM, Sagi I. Following matrix metalloproteinases activity near the cell boundary by infrared micro-spectroscopy. Matrix Biol. 2002;21:567–577.PubMedCrossRefGoogle Scholar
  20. 20.
    Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004;14:2115–2123.CrossRefGoogle Scholar
  21. 21.
    Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Miner Res. 1994;9:1541–1549.PubMedCrossRefGoogle Scholar
  22. 22.
    Fratzl P, Roschger P, Fratzl-Zelman N, Paschalis EP, Phipps R, Klaushofer K. Evidence that treatment with risedronate in women with postmenopausal osteoporosis affects bone mineralization and bone volume. Calcif Tissue Int. 2007;81:73–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Fratzl P, Schreiber S, Roschger P, Lafage MH, Rodan G, Klaushofer K. Effects of sodium fluoride and alendronate on the bone mineral in minipigs: a small-angle x-ray scattering and backscattered electron imaging study. J Bone Miner Res. 1996;11:248–253.PubMedCrossRefGoogle Scholar
  24. 24.
    Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between x-ray diffraction and infrared data. Calcif Tissue Int. 1996;58:9–16.PubMedCrossRefGoogle Scholar
  25. 25.
    George A, Veis A. FTIRS in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro. Biochemistry. 1991;30:2372–2377.PubMedCrossRefGoogle Scholar
  26. 26.
    Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–672.PubMedCrossRefGoogle Scholar
  27. 27.
    Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24:1565–1571.PubMedCrossRefGoogle Scholar
  28. 28.
    Gourion-Arsiquaud S, West PA, Boskey AL. Fourier transform-infrared microspectroscopy and microscopic imaging. Methods Mol Biol. 2008;455:293–303.PubMedCrossRefGoogle Scholar
  29. 29.
    Henneman ZJ, Nancollas GH, Ebetino FH, Russell RG, Phipps RJ. Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro. J Biomed Mater Res A. 2008;85:993–1000.PubMedGoogle Scholar
  30. 30.
    Huang RY, Miller LM, Carlson CS, Chance MR. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone. 2002;30:492–497.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang RY, Miller LM, Carlson CS, Chance MR. In situ chemistry of osteoporosis revealed by synchrotron infrared microspectroscopy. Bone. 2003;33:514–521.PubMedCrossRefGoogle Scholar
  32. 32.
    Hui S, Slemenda CW, Johnston CC. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81:1804–1809.PubMedCrossRefGoogle Scholar
  33. 33.
    Jepsen KJ, Schaffler MB. Bone mass does not adequately predict variations in bone fragility: a genetic approach. Trans Orthop Res Soc. 2001;26:114.Google Scholar
  34. 34.
    Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–1142.PubMedCrossRefGoogle Scholar
  35. 35.
    Kann P, Graeben S, Beyer J. Age-dependence of bone material quality shown by the measurement of frequency of resonance in the ulna. Calcif Tissue Int. 1994;54:96–100.PubMedCrossRefGoogle Scholar
  36. 36.
    Kennedy DF, Crisma M, Toniolo C, Chapman D. Studies of peptides forming 3(10)- and alpha-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. Biochemistry. 1991;30:6541–6548.PubMedCrossRefGoogle Scholar
  37. 37.
    Lazarev YA, Grishkovsky BA, Khromova TB. Amide I band spectrum and structure of collagen and related polypeptides. Biopolymers. 1985;24:1449–1478.PubMedCrossRefGoogle Scholar
  38. 38.
    Lazarev YA, Grishkovsky BA, Khromova TB, Lazareva AV, Grechishko VS. Bound water in the collagen-like triple-helical structure. Biopolymers. 1992;32:189–195.PubMedCrossRefGoogle Scholar
  39. 39.
    Lazarev YA, Lazareva AV, Shibnev A, Esipova NG. Infrared-spectra and structure of synthetic polytripeptides. Biopolymers. 1978;17:1197–1214.CrossRefGoogle Scholar
  40. 40.
    Li C, Paris O, Siegel S, Roschger P, Paschalis E, Klaushofer K, Fratzl P. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res. 2010;25:968–975.PubMedGoogle Scholar
  41. 41.
    Manolagas SC. Corticosteroids and fractures: a close encounter of the third cell kind. J Bone Miner Res. 2000;15:1001–1005.PubMedCrossRefGoogle Scholar
  42. 42.
    Marcott C, Reeder RC, Paschalis EP, Tatakis DN, Boskey AL, Mendelsohn R. Infrared microspectroscopic imaging of biomineralized tissues using a mercury-cadmium-telluride focal-plane array detector. Cell Mol Biol (Noisy-le-grand). 1998;44:109–115.Google Scholar
  43. 43.
    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–1259.PubMedGoogle Scholar
  44. 44.
    McCabe F, Zhou LJ, Steele CR, Marcus R. Noninvasive assessment of ulnar bending stiffness in women. J Bone Miner Res. 1991;6:53–59.PubMedCrossRefGoogle Scholar
  45. 45.
    McCreadie RB, Goldstein AS. Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res. 2000;15:2305–2308.PubMedCrossRefGoogle Scholar
  46. 46.
    Mendelsohn R, Hassankhani A, DiCarlo E, Boskey A. FT-IR microscopy of endochondral ossification at 20 mu spatial resolution. Calcif Tissue Int. 1989;44:20–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Miller LM, Carlson CS, Carr GL, Chance MR. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy. Cell Mol Biol (Noisy-le-grand). 1998;44:117–127.Google Scholar
  48. 48.
    Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3−) vibration. Biochim Biophys Acta. 2001;1527:11–19.PubMedGoogle Scholar
  49. 49.
    Monier-Faugere MC, Geng Z, Paschalis EP, Qi Q, Arnala I, Bauss F, Boskey AL, Malluche HH. Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res. 1999;14:1768–1778.PubMedCrossRefGoogle Scholar
  50. 50.
    Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone. 1987;8:79–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone. 2006;38:617–627.PubMedCrossRefGoogle Scholar
  52. 52.
    Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R. Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc. 2004;58:1–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Parfitt AM. Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis. Clin Obs Gynecol. 1987;30:789–811.CrossRefGoogle Scholar
  54. 54.
    Paschalis EP. Fourier transform infrared analysis and bone. Osteoporos Int. 2009;20:1043–1047.PubMedCrossRefGoogle Scholar
  55. 55.
    Paschalis EP, Boskey AL, Kassem M, Eriksen EF. Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res. 2003;18:955–959.PubMedCrossRefGoogle Scholar
  56. 56.
    Paschalis EP, Burr DB, Mendelsohn R, Hock JM, Boskey AL. Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1–34) for 18 months. J Bone Miner Res. 2003;18:769–775.PubMedCrossRefGoogle Scholar
  57. 57.
    Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int. 1996;59:480–487.PubMedGoogle Scholar
  58. 58.
    Paschalis EP, Glass EV, Donley DW, Eriksen EF. Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab. 2005;90:4644–4649.PubMedCrossRefGoogle Scholar
  59. 59.
    Paschalis EP, Recker R, DiCarlo E, Doty SB, Atti E, Boskey AL. Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res. 2003;18:1942–1946.PubMedCrossRefGoogle Scholar
  60. 60.
    Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19:2000–2004.PubMedCrossRefGoogle Scholar
  61. 61.
    Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res. 2001;16:1821–1828.PubMedCrossRefGoogle Scholar
  62. 62.
    Pleiner-Duxneuner J, Zwettler E, Paschalis E, Roschger P, Nell-Duxneuner V, Klaushofer K. Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcif Tissue Int. 2009;84:159–170.PubMedCrossRefGoogle Scholar
  63. 63.
    Posner AS. Bone mineral on the molecular level. Fed Proc. 1973;32:1933–1937.PubMedGoogle Scholar
  64. 64.
    Raisz LG, Kream BE. Regulation of bone formation. N Engl J Med. 1983;309:29–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int. 1989;45:157–164.PubMedCrossRefGoogle Scholar
  66. 66.
    Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ. Hydroxyl groups in bone mineral. Bone. 1995;16:583–586.PubMedCrossRefGoogle Scholar
  67. 67.
    Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int. 1991;49:251–258.PubMedCrossRefGoogle Scholar
  68. 68.
    Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. 2. Investigations in the nu3PO4 domain. Calcif Tissue Int. 1991;49:383–388.PubMedCrossRefGoogle Scholar
  69. 69.
    Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P. Scanning small angle x-ray scattering analysis of human bone sections. Calcif Tissue Int. 1999;64:422–429.PubMedCrossRefGoogle Scholar
  70. 70.
    Roschger P, Fratzl P, Klaushofer K, Rodan G. Mineralization of cancellous bone after alendronate and sodium fluoride treatment: a quantitative backscattered electron imaging study on minipig ribs. Bone. 1997;20:393–397.PubMedCrossRefGoogle Scholar
  71. 71.
    Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof B, Paschalis E, Streli C, Fratzl P, Klaushofer K. Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years strontium ranelate treatment. J Bone Miner Res. 2010;25:891–900.PubMedCrossRefGoogle Scholar
  72. 72.
    Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–466.PubMedCrossRefGoogle Scholar
  73. 73.
    Termine JD, Lundy DR. Hydroxide and carbonate in rat bone mineral and its synthetic analogues. Calcif Tissue Res. 1973;13:73–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Termine JD, Posner AS. Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science. 1966;153:1523–1525.PubMedCrossRefGoogle Scholar
  75. 75.
    Thaler R, Spitzer S, Rumpler M, Fratzl-Zelman N, Klaushofer K, Paschalis EP, Varga F. Differential effects of homocysteine and beta aminopropionitrile on preosteoblastic MC3T3-E1 cells. Bone. 2010;46:703–709.PubMedCrossRefGoogle Scholar
  76. 76.
    Weis MA, Wilkin DJ, Kim HJ, Wilcox WR, Lachman RS, Rimoin DL, Cohn DH, Eyre DR. Structurally abnormal type II collagen in a severe form of Kniest dysplasia caused by an exon 24 skipping mutation. J Biol Chem. 1998;273:4761–4768.PubMedCrossRefGoogle Scholar

Copyright information

© The Association of Bone and Joint Surgeons® 2011

Authors and Affiliations

  • Eleftherios P. Paschalis
    • 1
  • Richard Mendelsohn
    • 2
  • Adele L. Boskey
    • 3
  1. 1.Ludwig Boltzmann Institute of OsteologyHanusch Hospital of WGKK (Viennese Sickness Insurance Funds), and AUVA (Austrian Social Insurance for Occupational Risks) Trauma Centre MeidlingViennaAustria
  2. 2.Department of ChemistryRutgers UniversityNewarkUSA
  3. 3.Musculoskeletal Integrity ProgramHospital for Special SurgeryNew YorkUSA

Personalised recommendations