Skip to main content

2010 Nicolas Andry Award: Multipotent Adult Stem Cells from Adipose Tissue for Musculoskeletal Tissue Engineering

Abstract

Background

Cell-based therapies such as tissue engineering provide promising therapeutic possibilities to enhance the repair or regeneration of damaged or diseased tissues but are dependent on the availability and controlled manipulation of appropriate cell sources.

Questions/purposes

The goal of this study was to test the hypothesis that adult subcutaneous fat contains stem cells with multilineage potential and to determine the influence of specific soluble mediators and biomaterial scaffolds on their differentiation into musculoskeletal phenotypes.

Methods

We reviewed recent studies showing the stem-like characteristics and multipotency of adipose-derived stem cells (ASCs), and their potential application in cell-based therapies in orthopaedics.

Results

Under controlled conditions, ASCs show phenotypic characteristics of various cell types, including chondrocytes, osteoblasts, adipocytes, neuronal cells, or muscle cells. In particular, the chondrogenic differentiation of ASCs can be induced by low oxygen tension, growth factors such as bone morphogenetic protein-6 (BMP-6), or biomaterial scaffolds consisting of native tissue matrices derived from cartilage. Finally, focus is given to the development of a functional biomaterial scaffold that can provide ASC-based constructs with mechanical properties similar to native cartilage.

Conclusions

Adipose tissue contains an abundant source of multipotent progenitor cells. These cells show cell surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow mesenchymal stem cells (MSCs).

Clinical Relevance

The availability of an easily accessible and reproducible cell source may greatly facilitate the development of new cell-based therapies for regenerative medicine applications in the musculoskeletal system.

This is a preview of subscription content, access via your institution.

Fig. 1A–B
Fig. 2A–D
Fig. 3A–D
Fig. 4A–D
Fig. 5A–D

References

  1. 1.

    Akizuki S, Yasukawa Y, Takizawa T. Does arthroscopic abrasion arthroplasty promote cartilage regeneration in osteoarthritic knees with eburnation? A prospective study of high tibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone. Arthroscopy. 1997;13:9–17.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ. Engineering growing tissues. Proc Natl Acad Sci USA. 2002;99:12025–12030.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Awad HA, Halvorsen YD, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9:1301–1312.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25:3211–3222.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27:91–99.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules. 2002;3:910–916.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Blevins FT, Steadman JR, Rodrigo JJ, Silliman J. Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics. 1998;21:761–767; 767–768.

    Google Scholar 

  9. 9.

    Brittberg M. Autologous chondrocyte transplantation. Clin Orthop Relat Res. 1999;367(suppl):S147–S155.

    Article  PubMed  Google Scholar 

  10. 10.

    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–895.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng. 2000;122:570–575.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed. 1998;9:475–487.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259–264.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS. Polymer/alginate amalgam for cartilage-tissue engineering. Ann NY Acad Sci. 2002;961:134–138.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Caterson EJ, Nesti LJ, Danielson KG, Tuan RS. Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation. Mol Biotechnol. 2002;20:245–256.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15:231–241.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA. 2001;98:7841–7845.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–313.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Department of Health and Human Services. Stem Cells: Scientific Progress and Future Research Directions. Washington, DC: Department of Health and Human Services; June 2001. </info/scireport/2001report.

  20. 20.

    Diekman BO, Estes BT, Guilak F. The effects of BMP6 overexpression on adipose stem cell chondrogenesis: interactions with dexamethasone and exogenous growth factors. J Biomed Mater Res A. 2010;93:994–1003.

    PubMed  Google Scholar 

  21. 21.

    Diekman BO, Rowland CR, Caplan AI, Lennon D, Guilak F. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage derived matrix. Tissue Eng Part A. 2010;16:523–533.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290:763–769.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols. 2010;5(7):1294–1311.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Estes BT, Diekman BO, Guilak F. Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol Bioeng. 2008;99:986–995.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Estes BT, Gimble JM, Guilak F. Mechanical signals as regulators of stem cell fate. Curr Top Dev Biol. 2004;60:91–126.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum. 2006;54:1222–1232.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Estes BT, Wu AW, Storms RW, Guilak F. Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;209:987–995.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Freed LE, Engelmayr GC Jr, Borenstein JT, Moutos FT, Guilak F. Advanced material strategies for tissue engineering scaffolds Advanced Materials. 2009;21:3410–3418.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, Park RD, McIlwraith CW. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28:242–255.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 2001;7:363–371.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ghivizzani SC, Oligino TJ, Robbins PD, Evans CH. Cartilage injury and repair. Phys Med Rehabil Clin N Am. 2000;11:289–307, vi.

    CAS  PubMed  Google Scholar 

  32. 32.

    Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001;189:54–63.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Guilak F, Awad H, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology. 2004;41:389–399.

    CAS  PubMed  Google Scholar 

  34. 34.

    Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res. 2001;391(suppl):S295–S305.

    Article  PubMed  Google Scholar 

  35. 35.

    Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17–26.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;206:229–237.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Halvorsen YD, Bond A, Sen A, Franklin DM, Lea-Currie YR, Sujkowski D, Ellis PN, Wilkison WO, Gimble JM. Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism. 2001;50:407–413.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Hanson AD, Marvel SW, Bernacki SH, Banes AJ, van Aalst J, Loboa EG. Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities. Ann Biomed Eng. 2009;37:955–965.

    Article  PubMed  Google Scholar 

  39. 39.

    Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007;211:682–691.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Huang AH, Yeger-McKeever M, Stein A, Mauck RL. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthritis Cartilage. 2008;16:1074–1082.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast. Reconstr. Surg. 2002;109:1033–1041; discussion 1042–1033.

    Article  PubMed  Google Scholar 

  42. 42.

    Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage. 1999;7:15–28.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10:432–463.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–49.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–272.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Jurgens WJ, van Dijk A, Doulabi BZ, Niessen FB, Ritt MJ, van Milligen FJ, Helder MN. Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue. Cytotherapy. 2009;11:1052–1064.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O. A randomized trial comparing autologous chondrocyte implantation with microfracture: findings at five years. J Bone Joint Surg Am. 2007;89:2105–2112.

    Article  Google Scholar 

  48. 48.

    Leddy HA, Awad HA, Guilak F. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J Biomed Mater Res B Appl Biomater. 2004;70:397–406.

    Google Scholar 

  49. 49.

    Leddy HA, Guilak F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann Biomed Eng. 2003;31:753–760.

    Article  PubMed  Google Scholar 

  50. 50.

    Lee CR, Grodzinsky AJ, Hsu HP, Martin SD, Spector M. Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee. J Orthop Res. 2000;18:790–799.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol. 2007;6:265–273.

    Article  PubMed  Google Scholar 

  52. 52.

    Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32:370–373.

    Article  PubMed  Google Scholar 

  53. 53.

    Little D, Guilak F, Ruch DS. Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A. 2010 Apr 20. [Epub ahead of print].

  54. 54.

    Mahmoudifar N, Doran PM. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials. 2010;31:3858–3867.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Martin I, Vunjak-Novakovic G, Yang J, Langer R, Freed LE. Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp Cell Res. 1999;253:681–688.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Masuda K, Sah RL, Hejna MJ, Thonar EJ. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method. J Orthop Res. 2003;21:139–148.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–1253.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Mesimaki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–209.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Meyer DE, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol. 1999;17:1112–1115.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics. 1997;20:525–538.

    CAS  PubMed  Google Scholar 

  61. 61.

    Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24:376–385.

    Article  PubMed  Google Scholar 

  62. 62.

    Mobasheri A, Bondy CA, Moley K, Mendes AF, Rosa SC, Richardson SM, Hoyland JA, Barrett-Jolley R, Shakibaei M. Facilitative glucose transporters in articular chondrocytes: expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines. Adv Anat Embryol Cell Biol. 2008;200:1 p following vi, 1–84.

    Google Scholar 

  63. 63.

    Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater. 2007;6:162–167.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology. 2008;45:501–512.

    PubMed  Google Scholar 

  65. 65.

    Moutos FT, Guilak F. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng Part A. 2010;16:1291–1301.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13:67–97.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Murphy CL, Sambanis A. Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 2001;7:791–803.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone. 1990;11:181–188.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res. 2002;20:1060–1069.

    Article  PubMed  Google Scholar 

  70. 70.

    O’Driscoll SW, Fitzsimmons JS. The role of periosteum in cartilage repair. Clin Orthop Relat Res. 2001;391(suppl):S190–S207.

    Article  PubMed  Google Scholar 

  71. 71.

    Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE. Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. 2002;16:1691–1694.

    CAS  PubMed  Google Scholar 

  72. 72.

    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Prockop DJ. Adult stem cells gradually come of age. Nat Biotechnol. 2002;20:791–792.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Prockop DJ, Sekiya I, Colter DC. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy. 2001;3:393–396.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035–3039.

    CAS  PubMed  Google Scholar 

  76. 76.

    Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA. 2002;99:4397–4402.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Solchaga LA, Goldberg VM, Caplan AI. Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res. 2001;391(suppl):S161–S170.

    Article  PubMed  Google Scholar 

  78. 78.

    Stok KS, Lisignoli G, Cristino S, Facchini A, Muller R. Mechano-functional assessment of human mesenchymal stem cells grown in three-dimensional hyaluronan-based scaffolds for cartilage tissue engineering. J Biomed Mater Res A. 2010;93:37–45.

    PubMed  Google Scholar 

  79. 79.

    Tognana E, Chen F, Padera RF, Leddy HA, Christensen SE, Guilak F, Vunjak-Novakovic G, Freed LE. Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis Cartilage. 2005;13:129–138.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol. 2002;12:502–508.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Hong J, Kandel RA. Effect of biomechanical conditioning on cartilaginous tissue formation in vitro. J Bone Joint Surg Am. 2003;85(suppl 2):101–105.

    Google Scholar 

  82. 82.

    Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol. 2005;204:184–191.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res. 2003;412:196–212.

    Article  PubMed  Google Scholar 

  84. 84.

    Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 2003;48:418–429.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am. 1998;80:1745–1757.

    CAS  Google Scholar 

  86. 86.

    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

These studies would not have been possible without the many contributions of Hani Awad, Helawe Betre, Naichen Cheng, Geoffrey Erickson, Beverley Fermor, Lisa Freed, Yuan-Di Halvorsen, Holly Leddy, Dianne Little, Kristen Lott, Henry Rice, Chris Rowland, Lori Setton, Robert Storms, David Wang, Quinn Wickham, William Wilkison, and Art Wu.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farshid Guilak.

Additional information

One or more authors have received funding from the Duke Translational Medicine Institute RR24128 (FG), the Coulter Translational Research Partnership (FG), the NIH (Grants AR50245, AG15768, AR48182, and AR48852) (FG), and a NSF Graduate Fellowship (BOD).

The authors (FG, BTE, FTM, JMG) have filed patents on topics related to the contents of this paper. One of the authors (FG) owns equity in Cytex Therapeutics, Inc.

This work was performed at Duke University Medical Center.

About this article

Cite this article

Guilak, F., Estes, B.T., Diekman, B.O. et al. 2010 Nicolas Andry Award: Multipotent Adult Stem Cells from Adipose Tissue for Musculoskeletal Tissue Engineering. Clin Orthop Relat Res 468, 2530–2540 (2010). https://doi.org/10.1007/s11999-010-1410-9

Download citation

Keywords

  • Adult Stem Cell
  • Alginate Bead
  • Cartilage Repair
  • Chondrogenic Differentiation
  • Fluorescence Recovery After Photobleaching