Skip to main content
Log in

Bacterial Colonization of Bone Allografts: Establishment and Effects of Antibiotics

  • Symposium: Papers Presented at the 2009 Meeting of the Musculoskeletal Infection Society
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Bone grafts are frequently used to supplement bone stock and to establish structural stability. However, graft-associated infection represents a challenging complication leading to increased patient morbidity and healthcare costs.

Questions/purposes

We therefore designed this study to (1) determine if increasing initial S. aureus inoculation of bone allograft results in a proportionate increase in colonization; (2) assess if antibiotics decrease colonization and if antibiotic tethering to allograft alters its ability to prevent bacterial colonization; and (3) determine if covalent modification alters the allograft topography or its biological properties.

Methods

Allograft bone and vancomycin-modified bone (VAN-bone) was challenged with different doses of S. aureus for times out to 24 hours in the presence or absence of solution vancomycin. Bacterial colonization was assessed by fluorescence, scanning electron microscopy (SEM), and by direct colony counting. Cell density and distribution of osteoblast-like cells on control and modified allograft were then compared.

Results

Bacterial attachment was apparent within 6 hours with colonization and biofilm formation increasing with time and dose. Solution vancomycin failed to prevent bacterial attachment whereas VAN-bone successfully resisted colonization. The allograft modification did not affect the attachment and distribution of osteoblast-like cells.

Conclusions

Allograft bone was readily colonized by S. aureus and covered by a biofilm with especially florid growth in natural topographic niches. Using a novel covalent modification, allograft bone was able to resist colonization by organisms while retaining the ability to allow adhesion of osteoblastic cells.

Clinical Relevance

Generation of allograft bone that can resist infection in vivo would be important in addressing one of the most challenging problems associated with the use of allograft, namely infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–F
Fig. 5A–D
Fig. 6A–B
Fig. 7A–L
Fig. 8A–B

Similar content being viewed by others

References

  1. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716–720.

    Article  PubMed  Google Scholar 

  2. Antoci V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res. 2007;462:200–206.

    Article  PubMed  Google Scholar 

  3. Antoci V, Adams CS, Parvizi J, Ducheyne P, Shapiro IM, Hickok NJ. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin Orthop Relat Res. 2007;461:81–87.

    PubMed  Google Scholar 

  4. Arbeit RD, Dunn RM. Expression of capsular polysaccharide during experimental focal infection with Staphylococcus aureus. J Infect Dis. 1987;156:947–952.

    CAS  PubMed  Google Scholar 

  5. Aro HT, Aho AJ. Clinical use of bone allografts. Ann Med. 1993;25:403–412.

    Article  CAS  PubMed  Google Scholar 

  6. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–309.

    Article  PubMed  Google Scholar 

  7. Boyce T, Edwards J, Scarborough N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am. 1999;30:571–581.

    Article  CAS  PubMed  Google Scholar 

  8. Buttaro M, Comba F, Piccaluga F. Vancomycin-supplemented cancellous bone allografts in hip revision surgery. Clin Orthop Relat Res. 2007;461:74–80.

    PubMed  Google Scholar 

  9. Buttaro MA, Morandi A, Rivello HG, Piccaluga F. Histology of vancomycin-supplemented impacted bone allografts in revision total hip arthroplasty. J Bone Joint Surg Br. 2005;87:1684–1687.

    Article  CAS  PubMed  Google Scholar 

  10. Cleary J, Rogers P, Chapman S. Variability in polyene content and cellular toxicity among deoxycholate amphotericin B formulations. Pharmacotherapy. 2003;23:572–578.

    Article  CAS  PubMed  Google Scholar 

  11. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–1429.

    Article  CAS  PubMed  Google Scholar 

  12. Day RE, Megson S, Wood D. Iontophoresis as a means of delivering antibiotics into allograft bone. J Bone Joint Surg Br. 2005;87:1568–1574.

    Article  CAS  PubMed  Google Scholar 

  13. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br. 2007;89:574–579.

    Article  CAS  PubMed  Google Scholar 

  14. Desai BM. Osteobiologics. Am J Orthop. 2007;36(Suppl):8–11.

    PubMed  Google Scholar 

  15. Dick HM, Strauch RJ. Infection of massive bone allografts. Clin Orthop Relat Res. 1994;306:46–53.

    PubMed  Google Scholar 

  16. Edupuganti OP, Antoci V, King SB, Jose B, Adams CS. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization. Bioorg Med Chem Lett. 2007;17:2692–2696.

    Article  CAS  PubMed  Google Scholar 

  17. Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man: a study of the problems of wound infection. Br J Exp Pathol. 1957;38:573–586.

    CAS  PubMed  Google Scholar 

  18. Farfalli GL, Buttaro MA, Piccaluga F. Femoral fractures in revision hip surgeries with impacted bone allograft. Clin Orthop Relat Res. 2007;462:130–136.

    Article  PubMed  Google Scholar 

  19. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84:454–464.

    PubMed  Google Scholar 

  20. Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW. Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther. 2003;1:667–683.

    Article  PubMed  Google Scholar 

  21. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.

    Article  CAS  PubMed  Google Scholar 

  22. Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL. Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res. 1998;13:205–217.

    Article  CAS  PubMed  Google Scholar 

  23. James RC, MacLeod CJ. Induction of staphylococcal infections in mice with small inocula introduced on sutures. Br J Exp Pathol. 1961;42:266–277.

    CAS  PubMed  Google Scholar 

  24. Jofe MH, Gebhardt MC, Tomford WW, Mankin HJ. Reconstruction for defects of the proximal part of the femur using allograft arthroplasty. J Bone Joint Surg Am. 1988;70:507–516.

    CAS  PubMed  Google Scholar 

  25. Ketonis C, Parvizi J, Adams CS, Shapiro IM, Hickok NJ. Topographic features retained after antibiotic modification of Ti alloy surfaces: retention of topography with attachment of antibiotics. Clin Orthop Relat Res. 2009;467:1678–1687.

    Article  PubMed  Google Scholar 

  26. Lentino JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis. 2003;36:1157–1161.

    Article  PubMed  Google Scholar 

  27. Lewandrowski KU, Schollmeier G, Ekkemkamp A, Uhthoff HK, Tomford WW. Incorporation of perforated and demineralized cortical bone allografts. Part I: radiographic and histologic evaluation. Biomed Mater Eng. 2001;11:197–207.

    CAS  PubMed  Google Scholar 

  28. Lewandrowski KU, Tomford WW, Schomacker KT, Deutsch TF, Mankin HJ. Improved osteoinduction of cortical bone allografts: a study of the effects of laser perforation and partial demineralization. J Orthop Res. 1997;15:748–756.

    Article  CAS  PubMed  Google Scholar 

  29. Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am. 1988;70:369–376.

    CAS  PubMed  Google Scholar 

  30. Ma T, Gutnick J, Salazar B, Larsen MD, Suenaga E, Zilber S, Huang Z, Huddleston J, Smith RL, Goodman S. Modulation of allograft incorporation by continuous infusion of growth factors over a prolonged duration in vivo. Bone. 2007;41:386–392.

    Article  CAS  PubMed  Google Scholar 

  31. Mankin HJ, Hornicek FJ, Raskin KA. Infection in massive bone allografts. Clin Orthop Relat Res. 2005;432:210–216.

    Article  PubMed  Google Scholar 

  32. Muscolo DL, Ayerza MA, Calabrese ME, Gruenberg M. The use of a bone allograft for reconstruction after resection of giant-cell tumor close to the knee. J Bone Joint Surg Am. 1993;75:1656–1662.

    CAS  PubMed  Google Scholar 

  33. Percival SL, Kite P. Intravascular catheters and biofilm control. J Vasc Access. 2007;8:69–80.

    CAS  PubMed  Google Scholar 

  34. Sanford BA, de Feijter AW, Wade MH, Thomas VL. A dual fluorescence technique for visualization of Staphylococcus epidermidis biofilm using scanning confocal laser microscopy. J Ind Microbiol. 1996;16:48–56.

    Article  CAS  PubMed  Google Scholar 

  35. Stamm WE. Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med. 1991;91:65S–71S.

    Article  CAS  PubMed  Google Scholar 

  36. Thimm B, Unger R, Neumann H, Kirkpatrick C. Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO2-xerogel composite for bone tissue engineering. Biomed. Mater. 2008;3:15007.

    Article  Google Scholar 

  37. Tomford WW, Thongphasuk J, Mankin HJ, Ferraro MJ. Frozen musculoskeletal allografts. A study of the clinical incidence and causes of infection associated with their use. J Bone Joint Surg Am. 1990;72:1137–1143.

    CAS  PubMed  Google Scholar 

  38. Udipi K, Chen M, Cheng P, Jiang K, Judd D, Caceres A, Melder RJ, Wilcox JN. Development of a novel biocompatible polymer system for extended drug release in a next-generation drug-eluting stent. J Biomed Mater Res Part A. 2008;85:1064–1071.

    Article  Google Scholar 

  39. Witsø E, Persen L, Benum P, Bergh K. Cortical allograft as a vehicle for antibiotic delivery. Acta Orthop. 2005;76:481–486.

    Article  PubMed  Google Scholar 

  40. Witsø E, Persen L, Løseth K, Bergh K. Adsorption and release of antibiotics from morselized cancellous bone. In vitro studies of 8 antibiotics. Acta Orthop. 1999 Jun 1;70(3):298–304.

    Article  Google Scholar 

  41. Zimmerli W. Prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol. 2006;20:1045–1063.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Musculoskeletal Transplant Foundation for providing samples for this work as well as for their generous support of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Parvizi MD.

About this article

Cite this article

Ketonis, C., Barr, S., Adams, C.S. et al. Bacterial Colonization of Bone Allografts: Establishment and Effects of Antibiotics. Clin Orthop Relat Res 468, 2113–2121 (2010). https://doi.org/10.1007/s11999-010-1322-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-010-1322-8

Keywords

Navigation