Skip to main content

Advertisement

Log in

Tantalum is a good bone graft substitute in tibial tubercle advancement

  • Clinical Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Porous tantalum is reportedly a good substitute for structural bone graft in several applications. So far, its use has not been reported in tibial tuberosity anteriorization (TTA) for treatment of isolated degenerative chondral lesions of the patellofemoral joint.

Questions/Purposes

We asked whether the use of this material would produce similar standardized functional scores, pain (VAS), fusion rates, complications, and patient satisfaction to those for bone graft.

Patients and Methods

We performed a randomized, controlled trial in 101 patients (108 knees) scheduled for TTA comparing a porous tantalum implant (57 knees) with an autologous local tibial bone graft (51 knees). The minimum followup was 5 years (mean, 6.2 years; range, 5–8 years).

Results

At the last followup, clinical scores, fusion rates, and maintenance of the anteriorization either were better or similar for the TTA using the tantalum implant depending on the respective parameter. The operative technique was easier and shorter with the tantalum device. Complication and failure rates were greater using bone graft. Patient satisfaction was greater using the tantalum implant.

Conclusions

Porous tantalum provided a reasonable alternative to bone graft in TTA.

Level of Evidence

Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3A–C
Fig. 4A–B
Fig. 5A–C

Similar content being viewed by others

References

  1. Aglietti P, Giron F, Cudmo P. Disorders of the patellofemoral joint. In: Scott WN, ed. Insall & Scott Surgery of the Knee. Ed 4. Philadelphia, PA: Churchill Livingstone; 2006:807–936.

    Google Scholar 

  2. Benvenuti JF, Rakotomanana L, Leyvraz PF, Pioletti DP, Heegard JH, Genton MG. Displacements of the tibial tuberosity: effects of the surgical parameters. Clin Orthop Relat Res. 1997;343:224–234.

    Article  PubMed  Google Scholar 

  3. Bessette GC, Hunter RE. The Maquet procedure: a retrospective review. Clin Orthop Relat Res. 1988;232:159–167.

    PubMed  Google Scholar 

  4. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81:907–914.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen ZA, Henry JH, McCarthy DM, Mow VC, Ateshian GA. Computer simulations of patellofemoral joint surgery: patient-specific models for tuberosity transfer. Am J Sports Med. 2003;31:87–98.

    PubMed  Google Scholar 

  6. Davies AP, Vince AS, Shepstone L, Donell ST, Glasgow MM. The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Relat Res. 2002;402:206–212.

    Article  PubMed  Google Scholar 

  7. Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res. 2005;436:100–110.

    Article  PubMed  Google Scholar 

  8. Engebretsen L, Svenningsen S, Benum P. Advancement of the tibial tuberosity for patellar pain: a 5-year follow-up. Acta Orthop Scand. 1989;60:20–22.

    Article  CAS  PubMed  Google Scholar 

  9. Fair J. Tibial tubercle osteotomy. Tech Knee Surg. 2003;2:28–42.

    Article  Google Scholar 

  10. Ferguson AB Jr. Elevation of the insertion of the patellar ligament for patellofemoral pain. J Bone Joint Surg Am. 1982;64:766–771.

    PubMed  Google Scholar 

  11. Fernández M. [Functional modifications of patellofemoral joint after surgical procedures on the extensor mechanism of the knee] [in Spanish]. Rev Ortop Traumatol. 1993;37:104–109.

    Google Scholar 

  12. Fernández-Fairen M, Murcia A, Iglesias R, Querales V, Sevilla P, Gil J. [Osseointegration of porous tantalum stems implanted in avascular necrosis of the hip] [in Spanish]. Acta Orthop Mex. 2008;22:215–221.

    Google Scholar 

  13. Fernández-Fairen M, Sala P, Dufoo M Jr, Ballester J, Murcia A, Merzthal L. Anterior cervical fusion with tantalum implant: a prospective randomized controlled study. Spine (Phila PA 1976) 2008;33:465–472.

    Google Scholar 

  14. Ferrandez L, Usabiaga J, Yubero J, Sagarra J, De No L. An experimental study of the redistribution of patellofemoral pressures by the anterior displacement of the anterior tuberosity of the tibia. Clin Orthop Relat Res. 1989;238:183–189.

    PubMed  Google Scholar 

  15. Fulkerson JP. Patellofemoral pain disorders: evaluation and management. J Am Acad Orthop Surg. 1994;2:124–132.

    PubMed  Google Scholar 

  16. Fulkerson JP. Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med. 2002;30:447–456.

    PubMed  Google Scholar 

  17. Grelsamer RP, Stein DA. Patellofemoral arthritis. J Bone Joint Surg Am. 2006;88:1849–1860.

    Article  PubMed  Google Scholar 

  18. Grelsamer RP, Tedder JL. The lateral trochlear sign: femoral trochlear dysplasia as seen on a lateral view roentgenograph. Clin Orthop Relat Res. 1992;281:159–162.

    PubMed  Google Scholar 

  19. Heatley FW, Allen PR, Patrick JH. Tibial tubercle advancement for anterior knee pain: a temporary or permanent solution. Clin Orthop Relat Res. 1986;208:215–224.

    PubMed  Google Scholar 

  20. Hejgaard N, Watt-Boolsen S. The effect of anterior displacement of the tibial tuberosity in idiopathic chondromalacia patellae: a prospective randomized study. Acta Orthop Scand. 1982;53:135–139.

    Article  CAS  PubMed  Google Scholar 

  21. Herrenbruck TM, Mullen DJ, Parker RD. Operative management of patellofemoral pain with degenerative arthrosis. Sports Med Arthroscopy Rev. 2001;9:312–324.

    Article  Google Scholar 

  22. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 arthroscopies. Arthroscopy. 2002;18:730–734.

    Article  PubMed  Google Scholar 

  23. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101:101–104.

    CAS  PubMed  Google Scholar 

  24. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res. 1989;248:13–14.

    PubMed  Google Scholar 

  25. Irrgang JJ, Snyder-Mackler L, Wainner RS, Fu FH, Harner CD. Development of a patient-reported measure of function of the knee. J Bone Joint Surg Am. 1998;80:1132–1145.

    CAS  PubMed  Google Scholar 

  26. Jenny JY, Sader Z, Henry A, Jenny G, Jaeger JH. Elevation of the tibial tubercle for patellofemoral pain syndrome: an 8- to 15-year follow-up. Knee Surg Sports Traumatol Arthrosc. 1996;4:92–96.

    Article  CAS  PubMed  Google Scholar 

  27. Lanyon P, O’Reilly S, Jones A, Doherty M. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis. 1998;57:595–601.

    Article  CAS  PubMed  Google Scholar 

  28. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006;27:4671–4681.

    Article  CAS  PubMed  Google Scholar 

  29. Lund F, Nilsson BE. Anterior displacement of the tibial tuberosity in chondromalacia patellae. Acta Orthop Scand. 1980;51:679–688.

    Article  CAS  PubMed  Google Scholar 

  30. Maquet P. Advancement of the tibial tuberosity. Clin Orthop Relat Res. 1976;115:225–230.

    PubMed  Google Scholar 

  31. Mendes DG, Soudry M, Iusim M. Clinical assessment of Maquet tibial tuberosity advancement. Clin Orthop Relat Res. 1987;222:228–238.

    PubMed  Google Scholar 

  32. Meneghini RM, Lewallen DG, Hanssen AD. Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. J Bone Joint Surg Am. 2008;90:78–84.

    Article  PubMed  Google Scholar 

  33. Merchant AC. Femoral sulcus angle measurements. Am J Orthop. 1997;26:820–822.

    CAS  PubMed  Google Scholar 

  34. Merchant AC. Patellofemoral imaging. Clin Orthop Relat Res. 2001;389:15–21.

    Article  PubMed  Google Scholar 

  35. Molina A, Ballester J, Martin C, Muñoz I, Vazquez J, Torres J. Biomechanical effects of different surgical procedures on the extensor mechanism of the patellofemoral joint. Clin Orthop Relat Res. 1995;320:168–175.

    PubMed  Google Scholar 

  36. Nagaosa Y, Mateus M, Hassan B, Lanyon P, Doherty M. Development of a logically devised line drawing atlas for grading of knee osteoarthritis. Ann Rheum Dis. 2000;59:587–595.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura N, Ellis M, Seedhom BB. Advancement of the tibial tuberosity: a biomechanical study. J Bone Joint Surg Br. 1985;67:255–260.

    CAS  PubMed  Google Scholar 

  38. Nehme A, Lewallen DG, Hanssen AD. Modular porous metal augments for treatment of severe acetabular bone loss during revision hip arthroplasty. Clin Orthop Relat Res. 2004;429:201–208.

    Article  PubMed  Google Scholar 

  39. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43:752–757.

    PubMed  Google Scholar 

  40. Pan HQ, Kish V, Boyd RD, Burr DB, Radin EL. The Maquet procedure: effect of tibial shingle length on patellofemoral pressures. J Orthop Res. 1993;11:199–204.

    Article  CAS  PubMed  Google Scholar 

  41. Pidoriano AJ, Weinstein RN, Buuck DA, Fulkerson JP. Correlation of patellar articular lesions with results from anteromedial tibial tubercle transfer. Am J Sports Med. 1997;25:533–537.

    Article  CAS  PubMed  Google Scholar 

  42. Post WR, Fulkerson JP. Surgery of the patellofemoral joint: indications, effects, results and recommendations. In: Scott WN, ed. Insall & Scott Surgery of the Knee. Ed 4. Philadelphia, PA: Churchill Livingstone Elsevier; 2006:937–966.

    Google Scholar 

  43. Radin EL, Pan HQ. Long-term follow-up study of the Maquet procedure with special reference to the causes of failure. Clin Orthop Relat Res. 1993;290:253–258.

    PubMed  Google Scholar 

  44. Radnay CS, Scuderi GR. Management of bone loss: augments, cones, offset stems. Clin Orthop Relat Res. 2006;446:83–92.

    Article  PubMed  Google Scholar 

  45. Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand. 2000;71:262–267.

    Article  CAS  PubMed  Google Scholar 

  46. Robertsson O, Dunbar MJ. Patient satisfaction compared with general health and disease-specific questionnaires in knee arthroplasty patients. J Arthroplasty. 2001;16:476–482.

    Article  CAS  PubMed  Google Scholar 

  47. Roos EM, Roos HP, Lohmander LS. WOMAC Osteoarthritis Index: additional dimensions for use in subjects with post-traumatic osteoarthritis of the knee. Western Ontario and MacMaster Universities. Osteoarthritis Cartilage. 1999;7:216–221.

    Article  CAS  PubMed  Google Scholar 

  48. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS): development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28:88–96.

    CAS  PubMed  Google Scholar 

  49. Rue JP, Colton A, Zare SM, Shewman E, Farr J, Bach BR Jr, Cole BJ. Trochlear contact pressures after straight anteriorization of the tibial tuberosity. Am J Sports Med. 2008;36:1953–1959.

    Article  PubMed  Google Scholar 

  50. Schmid F. The Maquet procedure in the treatment of patellofemoral osteoarthrosis: long-term results. Clin Orthop Relat Res. 1993;294:254–258.

    PubMed  Google Scholar 

  51. Segur JM, Saz L, Vilalta C, García S, Domingo A, Combalia A. Behaviour of bone allografts in the advancement of the tibial tuberosity. Ann Transplant. 1999;4:23–25.

    CAS  PubMed  Google Scholar 

  52. Shirazi-Adl A, Mesfar W. Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads. Clin Biomech (Bristol, Avon). 2007;22:344–351.

    Article  CAS  Google Scholar 

  53. Siegmeth A, Duncan CP, Masri BA, Kim WY, Garbuz DS. Modular tantalum augments for acetabular defects in revision hip arthroplasty. Clin Orthop Relat Res. 2009;467:199–205.

    Article  PubMed  Google Scholar 

  54. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila PA 1976). 2003;28:134–139.

    PubMed  Google Scholar 

  55. Sudmann E, Salkowitsch B. Anterior displacement of the tibial tuberosity in the treatment of chondromalacia patellae. Acta Orthop Scand. 1980;51:171–174.

    Article  CAS  PubMed  Google Scholar 

  56. Wiberg G. Roentgenographs and anatomic studies on the femoropatellar joint: with special reference to the chondromalacia patellae. Acta Orthop Scand. 1941;12:319–410.

    Article  Google Scholar 

  57. Wigfield C, Robertson J, Gill S, Nelson R. Clinical experience with porous tantalum interbody implants in a prospective randomized controlled trial. Br J Neurosurg. 2003;17:418–425.

    Article  CAS  PubMed  Google Scholar 

  58. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res. 2001;58:180–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Antonio Manchón and Dr. Nuria Lavilla for help with radiographs, Ana Labayen for generating the randomization list and for help with the statistical analysis, and Ana Grau, the assisting nurse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Fernandez-Fairen PhD, MD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution has approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent was obtained.

This work was performed at Instituto de Cirugía Ortopédica y Traumatología de Barcelona.

About this article

Cite this article

Fernandez-Fairen, M., Querales, V., Jakowlew, A. et al. Tantalum is a good bone graft substitute in tibial tubercle advancement. Clin Orthop Relat Res 468, 1284–1295 (2010). https://doi.org/10.1007/s11999-009-1115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-1115-0

Keywords

Navigation