Skip to main content

Advertisement

Log in

2009 Marshall Urist Young Investigator Award: How Often Do Patients with High-Flex Total Knee Arthroplasty Use High Flexion?

  • Society Awards
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Although high-flexion TKA designs aim to safely accommodate deep flexion, it is unknown how often patients use deep flexion outside the laboratory. We used a validated smart-activity monitor to document the prevalence of knee flexion greater than 90° in 20 consecutive patients (21 knees) who had high-flexion TKAs, at a minimum of 2 years’ followup. Patients wore the device continuously for a mean of 35.7 ± 0.5 hours. The 21 knees flexed more than 90° for an average of 10 ± 3.8 minutes (0.5%). Activities performed with flexion greater than 90° were, on average, 70% in single-limb stance, 12% moving from sitting to standing, 8% walking, 7% moving from standing to reclining, 2% stepping, 0.9% moving from lying to standing, and 0.1% running. Eight knees flexed greater than 120° for an average of 2.2 minutes (range, 0.2–15 minutes), or 0.1% of the testing time. Activities performed with flexion greater than 120° were, on average, 90% in single-limb stance, 6% moving from sitting to standing, 3% walking, 0.6% moving from standing to reclining, 0.3% stepping, and 0.1% moving from lying to standing. Peak flexion used at any time during testing was, on average, 84% ± 11% of maximum postoperative flexion (125° ± 12°). These patients rarely used deep flexion.

Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akagi M, Nakamura T, Matsusue Y, Ueo T, Nishijyo K, Ohnishi E. The Bisurface total knee replacement: a unique design for flexion. Four-to-nine-year follow-up study. J Bone Joint Surg Am. 2000;82:1626–1633.

    PubMed  Google Scholar 

  2. Andriacchi TP. Functional analysis of pre and post-knee surgery: total knee arthroplasty and ACL reconstruction. J Biomech Eng. 1993;115:575–581.

    Article  PubMed  CAS  Google Scholar 

  3. Andriacchi TP, Stanwyck TS, Galante JO. Knee biomechanics and total knee replacement. J Arthroplasty. 1986;1:211–219.

    Article  PubMed  CAS  Google Scholar 

  4. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15:1833–1840.

    PubMed  CAS  Google Scholar 

  5. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty: influence of posterior condylar offset. J Bone Joint Surg Br. 2002;84:50–53.

    Article  PubMed  CAS  Google Scholar 

  6. Bin SI, Nam TS. Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc. 2007;15:350–355.

    Article  PubMed  Google Scholar 

  7. Boone DC, Azen SP. Normal range of motion of joints in male subjects. J Bone Joint Surg Am. 1979;61:756–759.

    PubMed  CAS  Google Scholar 

  8. Chao EY. Justification of triaxial goniometer for the measurement of joint rotation. J Biomech. 1980;13:989–1006.

    Article  PubMed  CAS  Google Scholar 

  9. Dahlkvist NJ, Mayo P, Seedhom BB. Forces during squatting and rising from a deep squat. Eng Med. 1982;11:69–76.

    Article  PubMed  CAS  Google Scholar 

  10. Dennis DA, Komistek RD, Colwell CE Jr, Ranawat CS, Scott RD, Thornhill TS, Lapp MA. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop Relat Res. 1998;356:47–57.

    Article  PubMed  Google Scholar 

  11. Dennis DA, Komistek RD, Hoff WA, Gabriel SM. In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res. 1996;331:107–117.

    Article  PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Mahfouz MR. In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res. 2003;410:114–130.

    Article  PubMed  Google Scholar 

  13. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–253.

    Article  PubMed  Google Scholar 

  14. Duffy GP, Trousdale RT, Stuart MJ. Total knee arthroplasty in patients 55 years old or younger: 10- to 17-year results. Clin Orthop Relat Res. 1998;356:22–27.

    Article  PubMed  Google Scholar 

  15. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee: tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64:258–264.

    PubMed  CAS  Google Scholar 

  16. Gill GS, Joshi AB. Long-term results of cemented, posterior cruciate ligament-retaining total knee arthroplasty in osteoarthritis. Am J Knee Surg. 2000;14:209–214.

    Google Scholar 

  17. Gill GS, Joshi AB. Long-term results of retention of the posterior cruciate ligament in total knee replacement in rheumatoid arthritis. J Bone Joint Surg Br. 2001;83:510–512.

    Article  PubMed  CAS  Google Scholar 

  18. Goldberg VM, Henderson BT. The Freeman-Swanson ICLH total knee arthroplasty: complications and problems. J Bone Joint Surg Am. 1980;62:1338–1344.

    PubMed  CAS  Google Scholar 

  19. Gupta SK, Ranawat AS, Shah V, Zikria BA, Zikria JF, Ranawat CS. The P.F.C. sigma RP-F TKA designed for improved performance: a matched-pair study. Orthopedics. 2006;29(9 suppl):S49-S52.

    PubMed  Google Scholar 

  20. Han HS, Kang SB, Yoon KS. High incidence of loosening of the femoral component in legacy posterior stabilised-flex total knee replacement. J Bone Joint Surg Br. 2007;89:1457–1461.

    Article  PubMed  CAS  Google Scholar 

  21. Hefzy MS, Kelly BP, Cooke TD. Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys. 1998;20:302–307.

    Article  PubMed  CAS  Google Scholar 

  22. Hsieh HH, Walker PS. Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am. 1976;58:87–93.

    PubMed  CAS  Google Scholar 

  23. Huang HT, Su JY, Wang GJ. The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up. J Arthroplasty. 2005;20:674–679.

    Article  PubMed  Google Scholar 

  24. Huddleston JI, Al Aiti A, Goldvasser D, Scarborough DM, Freiberg AA, Rubash HE, Malchau H, Harris WH, Krebs DE. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor. J Neuroeng Rehabil. 2006;3:21.

    Article  PubMed  Google Scholar 

  25. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res. 1989;248:13–14.

    PubMed  Google Scholar 

  26. Kim YH, Sohn KS, Kim JS. Range of motion of standard and high-flexion posterior stabilized total knee prostheses: a prospective, randomized study. J Bone Joint Surg Am. 2005;87:1470–1475.

    Article  PubMed  Google Scholar 

  27. Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  PubMed  Google Scholar 

  28. Koshino T, Saito T, Orito K, Mitsuhashi S, Takeuchi R, Kurosaka T. Increase in range of knee motion to obtain floor sitting after high tibial osteotomy for osteoarthritis. Knee. 2002;9:189–196.

    Article  PubMed  Google Scholar 

  29. Lafortune MA, Cavanagh PR, Sommer HJ 3rd, Kalenak A. Three-dimensional kinematics of the human knee during walking. J Biomech. 1992;25:347–357.

    Article  PubMed  CAS  Google Scholar 

  30. Laubenthal KN, Smidt GL, Kettelkamp DB. A quantitative analysis of knee motion during activities of daily living. Phys Ther. 1972;52:34–43.

    PubMed  CAS  Google Scholar 

  31. Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE, Rubash HE. Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am. 2004;86:1721–1729.

    PubMed  Google Scholar 

  32. Mahoney OM, Noble PC, Rhoads DD, Alexander JW, Tullos HS. Posterior cruciate function following total knee arthroplasty: a biomechanical study. J Arthroplasty. 1994;9:569–578.

    Article  PubMed  CAS  Google Scholar 

  33. Mallon WJ, Callaghan JJ. Total knee arthroplasty in active golfers. J Arthroplasty. 1993;8:299–306.

    Article  PubMed  CAS  Google Scholar 

  34. Maloney WJ, Schurman DJ. The effects of implant design on range of motion after total knee arthroplasty: total condylar versus posterior stabilized total condylar designs. Clin Orthop Relat Res. 1992;278:147–152.

    PubMed  Google Scholar 

  35. Markolf KL, Finerman GM, Amstutz HC. In vitro measurements of knee stability after bicondylar replacement. J Bone Joint Surg Am. 1979;61:547–557.

    PubMed  CAS  Google Scholar 

  36. McClung CD, Zahiri CA, Higa JK, Amstutz HC, Schmalzried TP. Relationship between body mass index and activity in hip or knee arthroplasty patients. J Orthop Res. 2000;18:35–39.

    Article  PubMed  CAS  Google Scholar 

  37. Meding JB, Keating EM. Overview: long-term followup: predicting the success of a total knee arthroplasty. Clin Orthop Relat Res. 2001;388:7–9.

    Article  PubMed  Google Scholar 

  38. Minoda Y, Aihara M, Sakawa A, Fukuoka S, Hayakawa K, Ohzono K. Range of motion of standard and high-flexion cruciate retaining total knee prostheses. J Arthroplasty. 2008 Jun 3. [Epub ahead of print].

  39. Mulholland SJ, Wyss UP. Activities of daily living in non-Western cultures: range of motion requirements for hip and knee joint implants. Int J Rehabil Res. 2001;24:191–198.

    Article  PubMed  CAS  Google Scholar 

  40. Myles CM, Rowe PJ, Walker CR, Nutton RW. Knee joint functional range of movement prior to and following total knee arthroplasty measured using flexible electrogoniometry. Gait Posture. 2002;16:46–54.

    Article  PubMed  Google Scholar 

  41. Nagura T, Dyrby CO, Alexander EJ, Andriacchi TP. Mechanical loads at the knee joint during deep flexion. J Orthop Res. 2002;20:881–886.

    Article  PubMed  Google Scholar 

  42. Ng FY, Wong HL, Yau WP, Chiu KY, Tang WM. Comparison of range of motion after standard and high-flexion posterior stabilised total knee replacement. Int Orthop. 2008;32:795–798.

    Article  PubMed  CAS  Google Scholar 

  43. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB. Does total knee replacement restore normal knee function? Clin Orthop Relat Res. 2005;431:157–165.

    Article  PubMed  Google Scholar 

  44. Nutton RW, van der Linden ML, Rowe PJ, Gaston P, Wade FA. A prospective randomised double-blind study of functional outcome and range of flexion following total knee replacement with the NexGen standard and high flexion components. J Bone Joint Surg Br. 2008;90:37–42.

    Article  PubMed  CAS  Google Scholar 

  45. Park KK, Chang CB, Kang YG, Seong SC, Kim TK. Correlation of maximum flexion with clinical outcome after total knee replacement in Asian patients. J Bone Joint Surg Br. 2007;89:604–608.

    Article  PubMed  CAS  Google Scholar 

  46. Pavone V, Boettner F, Fickert S, Sculco TP. Total condylar knee arthroplasty: a long-term followup. Clin Orthop Relat Res. 2001;388:18–25.

    Article  PubMed  Google Scholar 

  47. Ranawat CS. Design may be counterproductive for optimizing flexion after TKR. Clin Orthop Relat Res. 2003;416:174–176.

    Article  PubMed  Google Scholar 

  48. Reinschmidt C, van den Bogert AJ, Nigg BM, Lundberg A, Murphy N. Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech. 1997;30:729–732.

    Article  PubMed  CAS  Google Scholar 

  49. Roaas A, Andersson GB. Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand. 1982;53:205–208.

    Article  PubMed  CAS  Google Scholar 

  50. Rowe PJ, Myles CM, Walker C, Nutton R. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture. 2000;12:143–155.

    Article  PubMed  CAS  Google Scholar 

  51. Schai PA, Thornhill TS, Scott RD. Total knee arthroplasty with the PFC system: results at a minimum of ten years and survivorship analysis. J Bone Joint Surg Br. 1998;80:850–858.

    Article  PubMed  CAS  Google Scholar 

  52. Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC. Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am. 1998;80:54–59.

    Article  PubMed  CAS  Google Scholar 

  53. Shepherd EF, Toloza E, McClung CD, Schmalzried TP. Step activity monitor: increased accuracy in quantifying ambulatory activity. J Orthop Res. 1999;17:703–708.

    Article  PubMed  CAS  Google Scholar 

  54. Stiehl JB, Dennis DA, Komistek RD, Crane HS. In vivo determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplasty. 1999;14:293–299.

    Article  PubMed  CAS  Google Scholar 

  55. Stiehl JB, Dennis DA, Komistek RD, Keblish PA. In vivo kinematic analysis of a mobile bearing total knee prosthesis. Clin Orthop Relat Res. 1997;345:60–66.

    Article  PubMed  Google Scholar 

  56. Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA. Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg Br. 1995;77:884–889.

    PubMed  CAS  Google Scholar 

  57. Sultan PG, Most E, Schule S, Li G, Rubash HE. Optimizing flexion after total knee arthroplasty: advances in prosthetic design. Clin Orthop Relat Res. 2003;416:167–173.

    Article  PubMed  Google Scholar 

  58. Sun M, Hill JO. A method for measuring mechanical work and work efficiency during human activities. J Biomech. 1993;26:229–241.

    Article  PubMed  CAS  Google Scholar 

  59. Sun M, Reed GW, Hill JO. Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure. J Appl Physiol. 1994;76:2686–2691.

    PubMed  CAS  Google Scholar 

  60. Trousdale RT, Thornhill TS, Engh GA, Gustke KA, Ranawat CS, Whiteside LA. Case challenges in knee surgery: what would you do? Orthopedics. 2002;25:987–988.

    PubMed  Google Scholar 

  61. Weiss JM, Noble PC, Conditt MA, Kohl HW, Roberts S, Cook KF, Gordon MJ, Mathis KB. What functional activities are important to patients with knee replacements? Clin Orthop Relat Res. 2002;404:172–188.

    Article  PubMed  Google Scholar 

  62. Yamazaki J, Ishigami S, Nagashima M, Yoshino S. Hy-Flex II total knee system and range of motion. Arch Orthop Trauma Surg. 2002;122:156–160.

    Article  PubMed  Google Scholar 

  63. Zahiri CA, Schmalzried TP, Szuszczewicz ES, Amstutz HC. Assessing activity in joint replacement patients. J Arthroplasty. 1998;13:890–895.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang K, Pi-Sunyer FX, Boozer CN. Improving energy expenditure estimation for physical activity. Med Sci Sports Exerc. 2004;36:883–889.

    Article  PubMed  Google Scholar 

  65. Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer CN. Measurement of human daily physical activity. Obes Res. 2003;11:33–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Harry E. Rubash, MD, and William H. Harris MD, DSc, for invaluable guidance and support in all aspects of this project. We also thank Aimee Mulkern, NP, for assistance in generating the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James I. Huddleston MD.

Additional information

Dr. Freiberg has received consulting fees and royalties from Biomet Inc, Warsaw, IN, and Zimmer, Inc, Warsaw, IN. Dr. Malchau has received institutional research support from Zimmer.

Each author certifies that his or her institution has approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

This work was performed at the Harris Orthopaedic Biomechanics and Biomaterials Laboratory and Stanford University Medical Center.

Appendix

Appendix

Appendix 1 Typical activity log kept by a patient

About this article

Cite this article

Huddleston, J.I., Scarborough, D.M., Goldvasser, D. et al. 2009 Marshall Urist Young Investigator Award: How Often Do Patients with High-Flex Total Knee Arthroplasty Use High Flexion?. Clin Orthop Relat Res 467, 1898–1906 (2009). https://doi.org/10.1007/s11999-009-0874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-0874-y

Keywords

Navigation