Skip to main content

Advertisement

Log in

Type of Hip Fracture Determines Load Share in Intramedullary Osteosynthesis

  • Symposium: Biomechanics of Bone Healing
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

The choice of the appropriate implant continues to be critical for fixation of unstable hip fractures. Therefore, the goal of this study was to develop a numerical model to investigate the mechanical performance of hip fracture osteosynthesis. We hypothesized that decreasing fracture stability results in increasing load share of the implant and therefore higher stress within the implant. We also investigated the relationship of interfragmentary movement to the fracture stability. A finite element model was developed for a cephalomedullary nail within a synthetic femur and simulated a pertrochanteric fracture, a lateral neck fracture, and a subtrochanteric fracture. The femur was loaded with a hip force and was constrained physiologically. The FE model was validated by mechanical experiments. All three fractures resulted in similar values for stiffness (462–528 N/mm). The subtrochanteric fracture resulted in the highest local stress (665 MPa), and the pertrochanteric fracture resulted in a lower stress (621 MPa) with even lower values for the lateral neck fracture (480 MPa). Thus, intramedullary implants can stabilize unstable hip fractures with almost the same amount of stiffness as seen in stable fractures, but they have to bear a higher load share, resulting in higher stresses in the implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2A–B
Fig. 3A–B
Fig. 4
Fig. 5A–D

Similar content being viewed by others

References

  1. Audige L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop. 2003;27:197–203.

    Article  PubMed  CAS  Google Scholar 

  2. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–871.

    Article  PubMed  CAS  Google Scholar 

  3. Bostrom MP, Lyden JP, Ernberg JJ, Missri AA, Berberian WS. A biomechanical evaluation of the long stem intramedullary hip screw. J Orthop Trauma. 1995;9:45–52.

    Article  PubMed  CAS  Google Scholar 

  4. Breuil V, Roux CH, Testa J, Albert C, Chassang M, Brocq O, Euller-Ziegler L. Outcome of osteoporotic pelvic fractures: An underestimated severity. Survey of 60 cases. Joint Bone Spine. 2008;75:585–588.

    Article  PubMed  Google Scholar 

  5. Chang WS, Zuckerman JD, Kummer FJ, Frankel VH. Biomechanical evaluation of anatomic reduction versus medial displacement osteotomy in unstable intertrochanteric fractures. Clin Orthop Relat Res. 1987;141–146.

  6. Cheung G, Zalzal P, Bhandari M, Spelt JK, Papini M. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med Eng Phys. 2004;26:93–108.

    Article  PubMed  CAS  Google Scholar 

  7. Chong AC, Friis EA, Ballard GP, Czuwala PJ, Cooke FW. Fatigue performance of composite analogue femur constructs under high activity loading. Ann Biomed Eng. 2007;35:1196–1205.

    Article  PubMed  Google Scholar 

  8. Chong AC, Miller F, Buxton M, Friis EA. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng. 2007;129:487–493.

    Article  PubMed  Google Scholar 

  9. Cooper C, Campion G, Melton LJ, III. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2:285–289.

    Article  PubMed  CAS  Google Scholar 

  10. Cornwall R, Gilbert MS, Koval KJ, Strauss E, Siu AL. Functional outcomes and mortality vary among different types of hip fractures: a function of patient characteristics. Clin Orthop Relat Res. 2004;425:64–71.

    Article  PubMed  Google Scholar 

  11. Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech. 1996;29:525–535.

    Article  PubMed  CAS  Google Scholar 

  12. Eveleigh RJ. A review of biomechanical studies of intramedullary nails. Med Eng Phys. 1995;17:323–331.

    Article  PubMed  CAS  Google Scholar 

  13. Gourlay M, Richy F, Reginster JY. Strategies for the prevention of hip fracture. Am J Med. 2003;115:309–317.

    Article  PubMed  Google Scholar 

  14. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997;7:407–413.

    Article  PubMed  CAS  Google Scholar 

  15. Kummer FJ, Olsson O, Pearlman CA, Ceder L, Larsson S, Koval KJ. Intramedullary versus extramedullary fixation of subtrochanteric fractures. A biomechanical study. Acta Orthop Scand. 1998;69:580–584.

    Article  PubMed  CAS  Google Scholar 

  16. Mahomed MN, Harrington IJ, Hearn TC. Biomechanical analysis of the Medoff sliding plate. J Trauma. 2000;48:93–100.

    Article  PubMed  CAS  Google Scholar 

  17. Meislin RJ, Zuckerman JD, Kummer FJ, Frankel VH. A biomechanical analysis of the sliding hip screw: the question of plate angle. J Orthop Trauma. 1990;4:130–136.

    Article  PubMed  CAS  Google Scholar 

  18. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Muller V, Honl M. Duration and frequency of every day activities in total hip patients. J Biomech. 2001;34:873–881.

    Article  PubMed  CAS  Google Scholar 

  19. Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970;3:51–61.

    Article  PubMed  CAS  Google Scholar 

  20. Nuno N, Amabili M, Groppetti R, Rossi A. Static coefficient of friction between Ti-6Al-4V and PMMA for cemented hip and knee implants. J Biomed Mater Res. 2002;59:191–200.

    Article  PubMed  CAS  Google Scholar 

  21. Pajarinen J, Lindahl J, Savolainen V, Michelsson O, Hirvensalo E. Femoral shaft medialisation and neck-shaft angle in unstable pertrochanteric femoral fractures. Int Orthop. 2004;28:347–353.

    PubMed  CAS  Google Scholar 

  22. Pauwels F, Furlong RJ, Maquet P. Biomechanics of the Normal and Diseased Hip. Berlin, Germany: Springer; 1976.

    Google Scholar 

  23. Ramer M, Viceconti M, Toni A, Pipino F, Giunti A. Biomechanical validation of a new nail-plate for the repair of stable proximal femoral fractures. Arch Orthop Trauma Surg. 1997;116:137–142.

    Article  PubMed  CAS  Google Scholar 

  24. Raunest J, Engelmann R, Jonas M, Derra E. Morbidity and mortality in para-articular femoral fractures in advanced age. Results of a prospective study. Unfallchirurg. 2001;104:325–332.

    Article  PubMed  CAS  Google Scholar 

  25. Roberts CS, Nawab A, Wang M, Voor MJ, Seligson D. Second generation intramedullary nailing of subtrochanteric femur fractures: a biomechanical study of fracture site motion. J Orthop Trauma. 2002;16:231–238.

    Article  PubMed  Google Scholar 

  26. Rosenblum SF, Zuckerman JD, Kummer FJ, Tam BS. A biomechanical evaluation of the Gamma nail. J Bone Joint Surg Br. 1992;74:352–357.

    PubMed  CAS  Google Scholar 

  27. Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC. Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am. 1998;80:54–59.

    Article  PubMed  CAS  Google Scholar 

  28. Simoes JA, Vaz MA, Blatcher S, Taylor M. Influence of head constraint and muscle forces on the strain distribution within the intact femur. Med Eng Phys. 2000;22:453–459.

    Article  PubMed  CAS  Google Scholar 

  29. Verhofstad MH, van der Werken C. DHS osteosynthesis for stable pertrochanteric femur fractures with a two-hole side plate. Injury. 2004;35:999–1002.

    Article  PubMed  Google Scholar 

  30. Yosibash Z, Padan R, Joskowicz L, Milgrom C. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng. 2007;129:297–309.

    Article  PubMed  Google Scholar 

  31. Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech. 2007;40:3688–3699.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Roman Brunner for his support during the experimental stage of the study and Florian Högel, MD, for his support during the surgical procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Eberle MS.

Additional information

Claus Gerber and Geert von Oldenburg are employees of Stryker Osteosynthesis. Peter Augat receives research funding from Stryker Osteosynthesis and B.Braun Melsungen AG.

About this article

Cite this article

Eberle, S., Gerber, C., von Oldenburg, G. et al. Type of Hip Fracture Determines Load Share in Intramedullary Osteosynthesis. Clin Orthop Relat Res 467, 1972–1980 (2009). https://doi.org/10.1007/s11999-009-0800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-0800-3

Keywords

Navigation