Skip to main content
Log in

Enhancing uniformity in large-area slot die coating of low-viscosity perovskite ink

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Large-scale slot die coating technology is crucial for producing perovskite films in perovskite solar cells. Producing high-quality perovskite films requires a stable coating window to ensure that the thickness of the films is uniform and free of defects. This research delves into the production of high-quality perovskite films via slot die coating. It employs a combined approach of theoretical analysis and numerical simulation to define coating limits. Furthermore, it examines the influence of the geometric structure within the internal flow field and the transformation of fluid flow patterns in the external flow field on the overall film quality. We demonstrate that the removal of the edge geometry to the transverse fluid channel in the coating head significantly improves the stability of the internal flow field and enhances the consistency of fluid discharge. Additionally, uniform and stable coating of a perovskite solution can be achieved when the speed of the coating substrate in the downstream coating gap exceeds 0.7 times the maximum velocity of the Poiseuille component of the flow, and the coating flow pattern in the downstream coating gap remains consistent with Couette flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li, D, Mei, A, Hu, Y, Han, H, “Printable Processing Technologies for Perovskite Solar Cells.” In: Printable Mesoscopic Perovskite Solar Cells, pp. 65–87. Wiley (2023)

    Chapter  Google Scholar 

  2. Chou, Y-S, Chou, L-H, Guo, A-Z, Wang, X-F, Osaka, I, Wu, C-G, Liu, C-L, “Ultrasonic Spray-Coated Mixed Cation Perovskite Films and Solar Cells.” ACS Sustain. Chem. Eng., 7 (16) 14217–14224 (2019)

    Article  CAS  Google Scholar 

  3. Chung, J, Kim, SW, Li, Y, Mariam, T, Wang, X, Rajakaruna, M, Saeed, MM, Abudulimu, A, Shin, SS, Guye, KN, Huang, Z, Westbrook, RJE, Miller, E, Subedi, B, Podraza, NJ, Heben, MJ, Ellingson, RJ, Ginger, DS, Song, Z, Yan, Y, “Engineering Perovskite Precursor Inks for Scalable Production of High-Efficiency Perovskite Photovoltaic Modules.” Adv. Energy Mater., 13 (22) 2300595 (2023)

    Article  CAS  Google Scholar 

  4. Du, M, Zhao, S, Duan, L, Cao, Y, Wang, H, Sun, Y, Wang, L, Zhu, X, Feng, J, Liu, L, Jiang, X, Dong, Q, Shi, Y, Wang, K, Liu, S, “Surface Redox Engineering of Vacuum-Deposited NiOx for Top-Performance Perovskite Solar Cells and Modules.” Joule, 6 (8) 1931–1943 (2022)

    Article  CAS  Google Scholar 

  5. Tan, L, Zhou, J, Zhao, X, Wang, S, Li, M, Jiang, C, Li, H, Zhang, Y, Ye, Y, Tress, W, Ding, L, Gratzel, M, Yi, C, “Combined Vacuum Evaporation and Solution Process for High-Efficiency Large-Area Perovskite Solar Cells with Exceptional Reproducibility.” Adv. Mater., 35 (13) e2205027 (2023)

    Article  PubMed  Google Scholar 

  6. Chen, C, Chen, J, Han, H, Chao, L, Hu, J, Niu, T, Dong, H, Yang, S, Xia, Y, Chen, Y, Huang, W, “Perovskite Solar Cells Based on Screen-Printed Thin Films.” Nature, 612 (7939) 266–271 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. Hwang, K, Jung, YS, Heo, YJ, Scholes, FH, Watkins, SE, Subbiah, J, Jones, DJ, Kim, DY, Vak, D, “Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells.” Adv. Mater., 27 (7) 1241–1247 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. Kim, YY, Yang, TY, Suhonen, R, Kemppainen, A, Hwang, K, Jeon, NJ, Seo, J, “Roll-to-Roll Gravure-Printed Flexible Perovskite Solar Cells Using Eco-Friendly Antisolvent Bathing with Wide Processing Window.” Nat. Commun., 11 (1) 5146 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmitt, M, Scharfer, P, Schabel, W, “Slot Die Coating of Lithium-Ion Battery Electrodes: Investigations on Edge Effect Issues for Stripe and Pattern Coatings.” J. Coat. Technol. Res., 11 (1) 57–63 (2013)

    Article  Google Scholar 

  10. Tajima, K, Jeong, CY, Kubota, T, Ito, T, Araki, K, Kamei, T, Fukui, M, “Mass-Producible Slit Coating for Large-Area Electrochromic Devices.” Sol. Energy Mater. Sol. Cells, 232 111361 (2021)

    Article  CAS  Google Scholar 

  11. Shin, D, Lee, J, Park, J, “Effect of Slit Channel Width of a Shim Embedded in Slot-Die Head on High-Density Stripe Coating for OLEDs.” Coatings, 10 (8) 772 (2020)

    Article  CAS  Google Scholar 

  12. Potter, MC, “Stability of Plane Couette-Poiseuille Flow.” J. Fluid Mech., 24 (03) 609–619 (1966)

    Article  Google Scholar 

  13. Sangale, SS, Kwon, SN, Patil, P, Lee, HJ, Na, SI, “Locally Supersaturated Inks for a Slot-Die Process to Enable Highly Efficient and Robust Perovskite Solar Cells.” Adv. Energy Mater., 13 (33) 2300537 (2023)

    Article  CAS  Google Scholar 

  14. Li, J, Dagar, J, Shargaieva, O, Maus, O, Remec, M, Emery, Q, Khenkin, M, Ulbrich, C, Akhundova, F, Márquez, JA, Unold, T, Fenske, M, Schultz, C, Stegemann, B, Al-Ashouri, A, Albrecht, S, Esteves, AT, Korte, L, Köbler, H, Abate, A, Többens, DM, Zizak, I, List-Kratochvil, EJW, Schlatmann, R, Unger, E, “Ink Design Enabling Slot-Die Coated Perovskite Solar Cells with > 22% Power Conversion Efficiency, Micro-Modules, and 1 Year of Outdoor Performance Evaluation.” Adv. Energy Mater., 13 (33) 2203898 (2023)

    Article  CAS  Google Scholar 

  15. NREL, “Best Research-Cell Efficiency Chart.” https://www.nrel.gov/pv/interactive-cell-efficiency.html (2023)

  16. Kim, S, Lee, J, Lee, C, “Computational Fluid Dynamics Model for Thickness and Uniformity Prediction of Coating Layer in Slot-Die Process.” Int. J. Adv. Manuf. Technol., 104 (5–8) 2991–2997 (2019)

    Article  Google Scholar 

  17. Shin, Y, Kim, I, Oh, D, Kim, HC, Son, MJ, Lee, SH, Lee, TM, “Empirical Design of Slot-Die Having Shallow Reservoir for Thin-Film Printed Electronics.” Rev. Sci. Instrum., 89 (11) 115108 (2018)

    Article  PubMed  Google Scholar 

  18. Lin, CF, Wang, BK, Tiu, C, Liu, TJ, “On the Pinning of Downstream Meniscus for Slot Die Coating.” Adv. Polym. Technol., 32 (S1) E249–E257 (2012)

    Google Scholar 

  19. Ahn, W-G, Lee, SH, Nam, J, Chun, B, Jung, HW, “Simultaneous Analysis of Die Internal and External Flows in Slot Coating Process.” J. Chem. Eng. Jpn., 52 (3) 253–258 (2019)

    Article  CAS  Google Scholar 

  20. Ahmadian-Yazdi, M-R, Rahimzadeh, A, Chouqi, Z, Miao, Y, Eslamian, M, “Viscosity, Surface Tension, Density and Contact Angle of Selected PbI2, PbCl2 and Methylammonium Lead Halide Perovskite Solutions used in Perovskite Solar Cells.” AIP Adv., 8 (2) 025109 (2018)

    Article  Google Scholar 

  21. Bhamidipati, KL, Didari, S, Harris, TAL, “Slot Die Coating of Polybenzimiazole Based Membranes at the Air Engulfment Limit.” J. Power Sources, 239 382–392 (2013)

    Article  CAS  Google Scholar 

  22. Tan, P, Diao, S, Huang, T, Zhang, T, Yang, Z, Zhang, Y, Zhou, H, “Numerical and Experimental Study on Coating Uniformity Control in Simultaneous Double-sided Slot Coating with a Novel Contacted Slot Die.” Chem. Eng. Sci., 222 115716 (2020)

    Article  CAS  Google Scholar 

  23. Giuri, A, Saleh, E, Listorti, A, Colella, S, Rizzo, A, Tuck, C, Esposito Corcione, C, “Rheological Tunability of Perovskite Precursor Solutions: From Spin Coating to Inkjet Printing Process.” Nanomaterials, 9 (4) 582 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kistler, SF, Schweizer, PM, Liquid Film Coating. Springer, Dordrecht (1997)

    Book  Google Scholar 

  25. Malakhov, R, Tjiptowidjojo, K, Schunk, PR, “Mechanics of the Low-Flow Limit in Slot-Die Coating with No Vacuum.” AIChE J., 65 (6) e16593 (2019)

    Article  Google Scholar 

  26. Romero, OJ, Carvalho, MS, “Response of Slot Coating Flows to Periodic Disturbances.” Chem. Eng. Sci., 63 (8) 2161–2173 (2008)

    Article  CAS  Google Scholar 

  27. Lee, SH, Koh, HJ, Ryu, BK, Kim, SJ, Jung, HW, Hyun, JC, “Operability Coating Windows and Frequency Response in Slot Coating Flows from a Viscocapillary Model.” Chem. Eng. Sci., 66 (21) 4953–4959 (2011)

    Article  CAS  Google Scholar 

  28. Carley, JF, “Flow of Melts in ‘Crosshead’-Slit Dies; Criteria for Die Design.” J. Appl. Phys., 25 (9) 1118–1123 (1954)

    Article  Google Scholar 

  29. Velásquez, JP, Ramírez, EA, Flórez, A, Montoya, JF, Betancur, R, Ramírez, D, Carvalho, MS, Jaramillo, F, “Reaching Highly Uniform Perovskite Ink Flow from a Slot-Die Head Toward Printed Solar Cells.” Adv. Eng. Mater., 25 (8) 2201561 (2023)

    Article  Google Scholar 

  30. Chang, Y-R, Lin, C-F, Liu, T-J, “Start-up of Slot Die Coating.” Polym. Eng. Sci., 49 (6) 1158–1167 (2009)

    Article  CAS  Google Scholar 

  31. Secor, RB, “Analysis and Design of Internal Coating Die Cavities.” In: Kistler, SF, Schweizer, PM (eds.) Liquid Film Coating: Scientific Principles and Their Technological Implications, pp. 369–398. Springer, Dordrecht (1997)

    Chapter  Google Scholar 

  32. Woo, J-W, Sung, D-J, Lyu, M-Y, “Analysis of Coating Uniformity through Unsteady and Steady State Computer Simulation in Slot Coating.” Polym. Korea, 38 (5) 640–644 (2014)

    Article  CAS  Google Scholar 

  33. Raupp, SM, Schmitt, M, Walz, A-L, Diehm, R, Hummel, H, Scharfer, P, Schabel, W, “Slot Die Stripe Coating of Low Viscous Fluids.” J. Coat. Technol. Res., 15 (5) 899–911 (2018)

    Article  CAS  Google Scholar 

  34. Benkreira, H, Ikin, JB, “Slot Coating Minimum Film Thickness in Air and in Rarefied Helium.” Chem. Eng. Sci., 150 66–73 (2016)

    Article  CAS  Google Scholar 

  35. Tsuda, T, “Coating Flows of Power-Law Non-Newtonian Fluids in Slot Coating.” Nihon Reoroji Gakkaishi, 38 (4/5) 223–230 (2010)

    Article  CAS  Google Scholar 

  36. Pan, W, Chen, Z, Chen, X, Wang, F, Dai, G, “Slot Die Coating Window for a Uniform Fuel Cell Ink Dispersion.” AIChE J., 68 (8) e17719 (2022)

    Article  CAS  Google Scholar 

  37. Bhamidipati, K, Didari, S, Harris, TAL, “Experimental Study on Air Entrainment in Slot Die Coating of High-Viscosity, Shear-Thinning Fluids.” Chem. Eng. Sci., 80 195–204 (2012)

    Article  CAS  Google Scholar 

  38. Guha, A, Frigaard, IA, “On the Stability of Plane Couette-Poiseuille Flow with Uniform Crossflow.” J. Fluid Mech., 656 417–447 (2010)

    Article  CAS  Google Scholar 

  39. Chang, T-Y, Chen, F, Chang, M-H, “Stability of Plane Poiseuille-Couette Flow in a Fluid Layer Overlying a Porous Layer.” J. Fluid Mech., 826 376–395 (2017)

    Article  CAS  Google Scholar 

  40. Sadd, MH, “Constitutive Relations and Formulation of Classical Linear Theories of Solids and Fluids.” In: Continuum Mechanics Modeling of Material Behavior, pp. 159–261. Elsevier (2019)

    Google Scholar 

  41. Gittler, P, “Stability of Axial Poiseuille-Couette Flow Between Concentric Cylinders.” Acta Mech., 101 (1–4) 1–13 (1993)

    Article  Google Scholar 

  42. Gong, C, Zhang, C, Zhuang, Q, Li, H, Yang, H, Chen, J, Zang, Z, “Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells.” Nanomicro Lett., 15 (1) 17 (2022)

    PubMed  PubMed Central  Google Scholar 

  43. Chen, Y, Shi, J, Li, X, Li, S, Lv, X, Sun, X, Zheng, Y-Z, Tao, X, “A Universal Strategy Combining Interface and Grain Boundary Engineering for Negligible Hysteresis and High Efficiency (21.41%) Planar Perovskite Solar Cells.” J. Mater. Chem. A, 8 (13) 6349–6359 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by Industry Outlook and Key Core Technology Projects of Jiangsu Province (BE2022022-4, BE2022022-2, BE2021022-1), Industry Outlook and Key Core Technology Projects of Zhenjiang (GY2022025), Qinlan and 333 Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

HP: Investigation/Methodology/Writing—original draft/Writing—review and editing. HH: Writing—review and editing/Project Administration. JD: Investigation/Supervision/Validation. GC: Funding Acquisition/Writing—review and  editing/Supervision/Conceptualization. JD: Funding Acquisition/Writing—review and editing/Supervision/Conceptualization.

Corresponding author

Correspondence to Guanggui Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Hu, H., Ding, J. et al. Enhancing uniformity in large-area slot die coating of low-viscosity perovskite ink. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-024-00922-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-024-00922-7

Keywords

Navigation