Skip to main content
Log in

Insights into the composite coating for improving the weatherability of TiO2 white pigments

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Several inorganic coatings, such as ZrO2, SiO2, Al2O3, and AlPO4, have been utilized in the TiO2 pigment industry in order to reduce the natural photoactivity of TiO2 nanoparticles. However, the different role of each material in impacting the TiO2 photoactivity lacks comparative studies, and this is critical to provide a composite coating strategy for TiO2 pigments to achieve optimal weatherability. Our work has shown that each of these coating materials plays a unique role in suppressing the TiO2 photoactivity. For instance, ZrO2 and AlPO4 increase the rate of charge recombination, while SiO2 reduces it. By comparing and analyzing their effects on the charge carrier processes, we have designed and created a composite-coated TiO2 pigment that features a sequential deposition of ZrO2, SiO2, and AlPO4. This product has been proved to exhibit excellent weatherability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Braun, JH, Baidins, A, Marganski, RE, “TiO2 pigment technology: a review.” Prog. Org. Coat., 20 105–138 (1992)

    Article  CAS  Google Scholar 

  2. Liang, Y, Ding, H, “Mineral-TiO2 composites: preparation and application in papermaking, paints and plastics.” J. Alloys Compd., 844 156139 (2020)

    Article  CAS  Google Scholar 

  3. Karvinen, SM, “The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide.” Ind. Eng. Chem. Res., 42 1035–1043 (2003)

    Article  CAS  Google Scholar 

  4. Gupta, SM, Tripathi, M, “A review of TiO2 nanoparticles.” Chinese Sci. Bull., 56 1639–1657 (2011)

    Article  CAS  Google Scholar 

  5. Ni, M, Leung, MKH, Leung, DYC, Sumathy, K, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.” Renew. Sustain. Energy Rev., 11 401–425 (2007)

    Article  CAS  Google Scholar 

  6. Chen, MC, Koh, PW, Ponnusamy, VK, Lee, SL, “Titanium dioxide and other nanomaterials based antimicrobial additives in functional paints and coatings: review.” Prog. Org. Coat., 163 106660 (2022)

    Article  CAS  Google Scholar 

  7. Lei, P, Wang, F, Gao, X, Ding, Y, Zhang, S, Zhao, J, Liu, SR, Yang, MS, “Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants.” J. Hazard. Mater., 227–228 185–194 (2012)

    Article  Google Scholar 

  8. Ren, Y, Chen, M, Zhang, Y, Wu, L, “Fabrication of rattle-type TiO2/SIO2 core/shell particles with both high photoactivity and UV-shielding property.” Langmuir, 26 11391–11396 (2010)

    Article  CAS  Google Scholar 

  9. Losoi, T, “Process for coating titanium dioxide pigments.” United States Patent US5165995, 1992

  10. Fotou, GP, Kodas, TT, Anderson, B, “Coating titania aerosol particles with ZrO2, Al2O3/ZrO2 and SiO2/ZrO2in a gas-phase process.” Aerosol Sci. Technol., 33 557–571 (2000)

    Article  CAS  Google Scholar 

  11. Ryan, JN, Elimelech, M, Baeseman, JL, Magelky, RD, “Silica-coated titania and zirconia colloids for subsurface transport field experiments.” Environ. Sci. Technol., 34 2000–2005 (2000)

    Article  CAS  Google Scholar 

  12. Zhang, Y, Yin, H, Wang, A, Liu, C, Yu, L, Jiang, T, Hang, Y, “Evolution of zirconia coating layer on rutile TiO2 surface and the pigmentary property.” J. Phys. Chem. Solids, 71 1458–1466 (2010)

    Article  CAS  Google Scholar 

  13. Jang, E, Sridharan, K, Park, YM, Park, TJ, “Eliminated phototoxicity of TiO2 particles by an atomic-layer-deposited Al2O3 coating layer for UV-protection applications.” Chem. Eur. J., 22 12022–12026 (2016)

    Article  CAS  Google Scholar 

  14. Guo, J, Van Bui, H, Valdesueiro, D, Yuan, S, Liang, B, “Van Ommen suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions.” Nanomaterials, 8 61 (2018)

    Article  Google Scholar 

  15. Deissmann, W, Hund, F, Langmesser, P, “Aluminum phosphate coated titanium dioxide pigments for melamine and urea formaldehyde resins.” United States Patent US3330798, 1967

  16. Dong, X, Zhang, X, Yu, X, Jiang, Z, Liu, X, Li, C, Sun, Z, Zheng, S, Dionysiou, DD, “A novel rutile TiO2/AlPO4 core-shell pigment with substantially suppressed photoactivity and enhanced dispersion stability.” Powder Technol., 366 537–545 (2020)

    Article  CAS  Google Scholar 

  17. Joy, J, Mathew, J, George, SC, Joy, J, Mathew, J, George, SC, “Nanomaterials for photoelectrochemical water splitting – review.” Int. J. Hydrogen Energy, 43 4804–4817 (2018)

    Article  CAS  Google Scholar 

  18. Barry, HP, Derek, O, “Improved pigments and their preparation.” United Kingdom Patent GB-2108097-B, 1985

  19. Howard, PB, Derek, O, “Pigments and their preparation by coating with oxides of Si-Zr-Al.” United States Patent US4447271, 1984

  20. Karlsson, MCF, Abbas, Z, Bordes, R, Cao, Y, Larsson, A, Taylor, P, Steenari, BM, “Characterisation of silicon, zirconium and aluminium coated titanium dioxide pigments recovered from paint waste.” Dye. Pigment., 162 145–152 (2019)

    Article  CAS  Google Scholar 

  21. Andrew, BM, Wilmington, Smith, DJ, “Alumena coated tio pigments.” United States Patent US3409454, 1968

  22. Gratzel, M, “Photoelectrochemical cells.” Nature, 414 338–344 (2001)

    Article  CAS  Google Scholar 

  23. Jiang, C, Moniz, SJA, Wang, A, Zhang, T, Tang, J, “Photoelectrochemical devices for solar water splitting-materials and challenges.” Chem. Soc. Rev., 46 4645–4660 (2017)

    Article  CAS  Google Scholar 

  24. Qiu, J, Hajibabaei, H, Nellist, MR, Laskowski, FAL, Hamann, TW, Boettcher, SW, “Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite.” ACS Central Sci., 3 1015–1025 (2017)

    Article  CAS  Google Scholar 

  25. Kumar, S, Ojha, K, Ganguli, AK, “Interfacial charge transfer in photoelectrochemical processes.” Adv. Mater. Interfaces, 4 1600981 (2017)

    Article  Google Scholar 

  26. Moehl, T, Cui, W, Wick-Joliat, R, Tilley, SD, “Resistance-based analysis of limiting interfaces in multilayer water splitting photocathodes by impedance spectroscopy, sustain.” Energy Fuels, 3 2067–2075 (2019)

    CAS  Google Scholar 

  27. Cui, W, Moehl, T, Siol, S, Tilley, SD, “Operando electrochemical study of charge carrier processes in water splitting photoanodes protected by atomic layer deposited TiO2, Sustain.” Energy Fuels, 3 3085–3092 (2019)

    CAS  Google Scholar 

  28. Guan, R, He, Z, Liu, S, Han, Y, Wang, Q, Cui, W, He, T, “A novel photoelectrochemical approach for efficient assessment of TiO2 pigments weatherability.” Powder Technol., 380 334–340 (2021)

    Article  CAS  Google Scholar 

  29. Cui, W, Wang, Y, He, Z, Zou, Y, Yang, L, Liu, S, Chen, J, Bi, X, Guo, S, Liu, S, He, T, “A sol-gel route to prepare CeOx dot-decorated TiO2 pigment with improved weatherability.” Mater. Today Commun., 31 103752 (2022)

    Article  CAS  Google Scholar 

  30. Zhang, Y, Yin, H, Wang, A, Ren, M, Gu, Z, Liu, M, Shen, Y, Yu, L, Jiang, T, “Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties.” Appl. Surf. Sci., 257 1351–1360 (2010)

    Article  CAS  Google Scholar 

  31. Zhang, Y, Liu, Y, Ge, C, Yin, H, Ren, M, Wang, A, Jiang, T, Yu, L, “Evolution mechanism of alumina nanofilms on rutile TiO2 starting from sodium metaaluminate and the pigmentary properties.” Powder Technol., 192 171–177 (2009)

    Article  CAS  Google Scholar 

  32. Shen, L, Cao, W, Wang, A, Yin, H, “Preparation of TiO2@ZrO2@AlOOH@polymethyl acrylic acid nanocomposites and the impact of layer structure on color scheme, photocatalytic activity, and dispersion stability.” Ind. Eng. Chem. Res., 59 21811–21821 (2020)

    Article  CAS  Google Scholar 

  33. Leow, WR, Ng, WKH, Peng, T, Liu, X, Li, B, Shi, W, Lum, Y, Wang, X, Lang, X, Li, S, Mathews, N, Ager, JW, Sum, TC, Hirao, H, Chen, X, “Al2O3 surface complexation for photocatalytic organic transformations.” J. Am. Chem. Soc., 139 269–276 (2017)

    Article  CAS  Google Scholar 

  34. Wood, S, O’Connor, D, Jones, CW, Claverley, JD, Blakesley, JC, Giusca, C, Castro, FA, “Transient photocurrent and photovoltage mapping for characterisation of defects in organic photovoltaics.” Sol. Energy Mater. Sol. Cells, 161 89–95 (2017)

    Article  CAS  Google Scholar 

  35. Liu, Y, Ge, C, Ren, M, Yin, H, Wang, A, Zhang, D, Liu, C, Chen, J, Feng, H, Yao, H, Jiang, T, “Effects of coating parameters on the morphology of SiO2-coated TiO2 and the pigmentary properties.” Appl. Surf. Sci., 254 2809–2819 (2008)

    Article  CAS  Google Scholar 

  36. Cao, W, Wang, A, Yin, H, “Preparation of TiO2@ZrO2@SiO2@MAA nanocomposites and impact of layer structure on pigmentary performance.” Mater. Chem. Phys., 263 124403 (2021)

    Article  CAS  Google Scholar 

  37. Li, J, Sun, T, Wang, Y, Wang, L, Qu, J, Qi, T, “Preparation and film-growing mechanism of hydrous zirconia coated on TiO2.” Int. J. Miner. Metall., 17 660–667 (2010)

    Article  CAS  Google Scholar 

  38. Wu, C-Y, Tu, K-J, Deng, J-P, Lo, Y-S, Wu, C-H, “Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis.” Materials, 10 566 (2017)

    Article  Google Scholar 

  39. Nosaka, Y, Nosaka, A, “Understanding hydroxyl radical (·OH) generation.” ACS Energy Lett., 1 356–359 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shandong Province Natural Science Foundation (ZR202103030521), National Natural Science Foundation of China (No. 51702034), and the Key R&D Program of Shandong Province (No. 2019GNC106063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3788 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, Y., Yang, L. et al. Insights into the composite coating for improving the weatherability of TiO2 white pigments. J Coat Technol Res 20, 2125–2133 (2023). https://doi.org/10.1007/s11998-023-00809-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00809-z

Keywords

Navigation