Skip to main content
Log in

Formulation and testing of a slow-release antimicrobial paint: a case study of antifungi and antialgae activity for interior and exterior applications

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The colonization of microorganisms on painted surfaces varies according to paint formulation, support substrate, and environmental conditions. Developing antimicrobial coatings to prevent growth of microorganisms can prevent adverse health and environmental consequences. Release of antimicrobial agents from the coating surface over time presents toxicity and diminishing antimicrobial protection challenges. Herein, we have formulated and performed 272 tests (including the control experiments, and not including the replication assays) on water-based paint formulations against different species, including Aureobasidium pullulans and Chlorella vulgaris, among others, before and after accelerated weathering tests. Based on the zone of inhibition values (Z value) from fungi and algae resistance tests, 97% of the formulations were effective against fungi species prior to accelerated weathering, while approximately one-third were effective against algae species. Formulations with lower Z values (X2-678, X3-P20T, R1-663, and X2-663) indicated slow release of the biocide via diffusion-controlled behavior is effective in performance optimization and minimizing environmental impacts. For antialgae applications, R1-663 and X2-663 with average Z value variations of 3.3 and 2.0 mm, respectively, ensure full protection. Weathering testing demonstrated 3 of 10 samples failed by cracking and delamination. The main objective of this work is to evaluate, compare, and enhance antimicrobial paint formulations considering the advantages of slow-release and controlled-release approaches. Among samples that passed weathering tests, X1-663, X1-P20T, X3-663, and X3-P20T had the most consistent antifungi activity, while X1-663 and X3-663 showed the best antialgae activity. The difference in antifungi and antialgae activity was mainly attributed to differences in release mechanism based on biocides’ solubility in water, size, and diffusion through the coating layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zielecka, M, Bujnowska, E, Kepska, B, Wenda, M, Piotrowska, M, “Antimicrobial Additives for Architectural Paints and Impregnates.” Prog. Org. Coat., 72 (1–2) 193–201. https://doi.org/10.1016/J.PORGCOAT.2011.01.012 (2011)

    Article  CAS  Google Scholar 

  2. Ravikumar, HR, Rao, SS, Karigar, CS, “Biodegradation of Paints: A Current Status.” Indian J. Sci. Technol., 5 1977–1987 (2012). https://doi.org/10.17485/ijst/2012/v5i1.33

    Article  Google Scholar 

  3. Chukwuemeka, N, “Microorganisms Survive In Paints.” Curr. Anal. Biotechnol., 2 1–5 (2019)

    Google Scholar 

  4. Kappock, PS, Glaser, JK, Cornish, A, “Protecting Paints.” Eur. Coat. J., 49 (511) 144 (2005)

    Google Scholar 

  5. Kaiser, J, Zuin, S, Wick, P, “Is Nanotechnology Revolutionizing the Paint and Lacquer Industry? A Critical Opinion.” Sci. Total Environ., 442 282–289. https://doi.org/10.1016/j.scitotenv.2012.10.009 (2013)

    Article  CAS  Google Scholar 

  6. Bellotti, N, Romagnoli, R, Quintero, C, Domínguez-wong, C, Ruiz, F, Deyá, C, “Nanoparticles as Antifungal Additives for Indoor Water Borne Paints.” Prog. Org. Coat., 86 33–40. https://doi.org/10.1016/j.porgcoat.2015.03.006 (2015)

    Article  CAS  Google Scholar 

  7. Bellotti, N, Deyá, C, “Natural Products Applied to Antimicrobial Coatings.” Stud. Nat. Prod. Chem., 60 485–508. https://doi.org/10.1016/B978-0-444-64181-6.00014-0 (2019)

    Article  Google Scholar 

  8. Tator, KB, “Coating Deterioration.” ASM Handbook, Prot. Org. Coat., 5 462–473. https://doi.org/10.31399/asm.hb.v05b.a0006073 (2018)

    Article  Google Scholar 

  9. van Alphen, M, “Paint Film Components.” Natl. Environ. Health Forum. (2) (1998)

  10. Rahman, WA, Rosli, H, Baharuddin, SN, Salleh, B, “Incidence and Remediation of Fungi in a Sick Building in Malaysia: A Case Study.” Aerobiologia (Bologna)., 28 (2) 275–283. https://doi.org/10.1007/s10453-011-9226-y (2012)

    Article  Google Scholar 

  11. Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Algal Defacement. https://www.astm.org/d5589-19.html. Accessed January 28, 2022

  12. Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate Assay. https://www.astm.org/d5590-00.html. Accessed January 28, 2022

  13. Shirakawa, MA, Gaylarde, CC, Gaylarde, PM, John, V, Gambale, W, “Fungal Colonization and Succession on Newly Painted Buildings and the Effect of Biocide.” FEMS Microbiol. Ecol., 39 165–173 (2002)

    Article  CAS  Google Scholar 

  14. Crispim, CA, Gaylarde, CC, “Cyanobacteria and Biodeterioration of Cultural Heritage: A Review.” Microb. Ecol., 2005 (49) 1–9 (September 2004)

    Google Scholar 

  15. Kurowski, G, Vogt, O, Ogonowski, J, "Paint-degrading microorganisms Mikroorganizmy zdolne do degradacji powłok malarskich." Tech Trans 12/2017 Czas Tech 12/2017 Chem. 2017:81–92. https://doi.org/10.4467/2353737XCT.17.211.7754

  16. Garg, KL, Jain, KK, Mishra, AK, “Role of Fungi in the Deterioration of Wall Paintings.” Sci. Total Environ., 167 255–271 (1995)

    Article  CAS  Google Scholar 

  17. Engelhart, S, Rietschel, E, Exner, M, Lange, L, “Childhood Hypersensitivity Pneumonitis Associated with Fungal Contamination of Indoor Hydroponics.” Int. J. Hygine Environ. Heal., 212 18–20. https://doi.org/10.1016/j.ijheh.2008.01.001 (2009)

    Article  Google Scholar 

  18. Taylor, PE, Esch, R, Flagan, RC, House, J, Tran, L, Glovsky, M, “Identification and Possible Disease Mechanisms of an Under-Recognized Fungus, Aureobasidium pullulans.” Int. Arch. Allergy Immunol., 139 45–52 (2006)

    Article  Google Scholar 

  19. Temprano, J, Becker, BA, Hutcheson, PS, Knutsen, AP, Dixit, A, Slavin, RG, “Case report Hypersensitivity Pneumonitis Secondary to Residential Exposure to Aureobasidium pullulans in 2 Siblings.” Ann. Allergy, Asthma Immunol., 99 (6) 562–566 (2007)

    Article  Google Scholar 

  20. Segers, FJJ, Meijer, M, Houbraken, J, et al. “Xerotolerant Cladosporium sphaerospermum Are Predominant on Indoor Surfaces Compared to Other Cladosporium Species.” PLoS One., 10 (12) 1–15 (2015)

    Article  Google Scholar 

  21. Smelyansky, P. Extended Dry-Film Fungal Optimization Study for Finishes Unlimited Clear and White Coatings. Buffalo Grove, IL; 2013.

  22. Shirakawa, MA, Tavares, RG, Gaylarde, CC, Santos Taqueda, ME, Loh, K, John, VM, “Climate as the Most Important Factor Determining Anti-Fungal Biocide Performance in Paint Films.” Sci. Total Environ., 408 5878–5886. https://doi.org/10.1016/j.scitotenv.2010.07.084 (2010)

    Article  CAS  Google Scholar 

  23. Shirakawa, MA, John, VM, Mocelin, A, et al. “Effect of Silver Nanoparticle and TiO2 Coatings on Bio Film Formation on Four Types of Modern Glass.” Int. Biodeterior. Biodegr., 108 175–180. https://doi.org/10.1016/j.ibiod.2015.12.025 (2016)

    Article  CAS  Google Scholar 

  24. Hamed, SAM, “In-Vitro Studies on Wood Degradation in Soil by Soft-Rot Fungi: Aspergillus niger and Penicillium chrysogenum.” Int. Biodeterior. Biodegr., 78 98–102. https://doi.org/10.1016/J.IBIOD.2012.12.013 (2013)

    Article  CAS  Google Scholar 

  25. Verma, J, Bhattacharya, A, "Development of Coating Formulation with Silica – Titania Core – Shell Nanoparticles Against Pathogenic Fungus." R. Soc. Open Sci., 5 (8) (2018)

  26. Nianping, L, Jinhua, H, Binghua, L, Lijie, W, "Indoor Mildew Pollution in Building and Control Strategies." In: Third International Conference on Measuring Technology and Mechatronics Automation, 394–397 (2011). https://doi.org/10.1109/ICMTMA.2011.385

  27. Bechtold, M, Valério, A, Ulson de Souza, AA, et al. “Synthesis and Application of Silver Nanoparticles as Biocidal Agent in Polyurethane Coating.” J. Coat. Technol Res., 17 (3) 613–620. https://doi.org/10.1007/s11998-019-00297-0 (2020)

    Article  CAS  Google Scholar 

  28. "Control of Toxigenic Molds in Food Processing." Microb. Food Saf. Preserv Tech., 348–377 (2014). https://doi.org/10.1201/B17465-21

  29. Mycotoxins in Agriculture and Food Safety - Kaushal K. Shinha, Deepak Bhatnagar - Google Books. https://www.jstor.org/stable/25562389. Accessed April 30, 2022.

  30. Bravery, AF, “Biodeterioration of Paint—A State-of-the-Art Comment.” Biodeterior, 7 466–485. https://doi.org/10.1007/978-94-009-1363-9_63 (1988)

    Article  Google Scholar 

  31. Marriott NG, Schilling MW, Gravani RB, "Dairy Processing Plant Sanitation." 295–309 (2018). https://doi.org/10.1007/978-3-319-67166-6_16

  32. Jaakkola, MS, Nordman, H, Piipari, R, et al. “Indoor Dampness and Molds and Development of Adult-Onset Asthma: A Population-Based Incident Case-Control Study.” Environ. Health Perspect., 110 (5) 543–547. https://doi.org/10.1289/EHP.02110543 (2002)

    Article  Google Scholar 

  33. Larcombe, L, Nickerson, P, Singer, M, et al. "Housing Conditions in 2 Canadian First Nations Communities”. Int. J. Circumpolar. Health. 70 (2) 141–153 (2012). https://doi.org/10.3402/IJCH.V70I2.17806

  34. Schoknecht, U, Gruycheva, J, Mathies, H, Bergmann, H, Burkhardt, M, “Leaching of Biocides Used in Façade Coatings Under Laboratory Test Conditions.” Environ. Sci. Technol., 43 (24) 9321–9328. https://doi.org/10.1021/es9019832 (2009)

    Article  CAS  Google Scholar 

  35. Qu, YY, Zhang, SF, “Preparation and Characterization of Novel Waterborne Antifouling Coating.” J. Coat. Technol. Res., 9 (6) 667–674. https://doi.org/10.1007/s11998-012-9406-x (2012)

    Article  CAS  Google Scholar 

  36. Kyei, SK, Darko, G, Akaranta, O, “Chemistry and Application of Emerging Ecofriendly Antifouling Paints: A Review.” J. Coat. Technol. Res., 17 (2) 315–332. https://doi.org/10.1007/s11998-019-00294-3 (2020)

    Article  CAS  Google Scholar 

  37. Schnur, JM, Schoen, PE, Testoff, M, Rudolph, A, Brady, RF. U.S. Patent No. US 20020142022A1 - Method of Controlled Release and Controlled Release Microstructures. 1(19) (2002)

  38. Price, RR, Brady, Jr RF. U.S. Patent No. US5049382A - Coating and Composition Containing LPD Microstructure Toxin Dispensers. (1991)

  39. Krishnan, V. U.S. Patent No. US20080226584A1 - Antimicrobial and Antistatic Polymers and Methods of Using Such Polymers on Various Substrates. (2008)

  40. Danková, M, Kalendová, A, Machotová, J, “Waterborne Coatings Based on Acrylic Latex Containing Nanostructured ZnO as an Active Additive.” J. Coat. Technol. Res., 17 (2) 517–529. https://doi.org/10.1007/s11998-019-00302-6 (2020)

    Article  CAS  Google Scholar 

  41. Thomas, KV, Brooks, S, “The Environmental Fate and Effects of Antifouling Paint Biocides.” Biofouling. J. Bioadhesion Biofilm. Res., 2010 (26) 73–88 (2010)

    Article  Google Scholar 

  42. Abreu, FEL, Lima da Silva, JN, Castro, ÍB, Fillmann, G, “Are Antifouling Residues a Matter of Concern in the Largest South American Port?” J. Hazard Mater., 398 122937. https://doi.org/10.1016/j.jhazmat.2020.122937 (2020)

    Article  CAS  Google Scholar 

  43. de Campos, BG, Figueiredo, J, Perina, F, Abessa, DM de S, Loureiro, S, Martins, R, “Occurrence, Effects and Environmental Risk of Antifouling Biocides (EU PT21): Are Marine Ecosystems Threatened?” Crit. Rev. Environ. Sci. Technol., 0 (0) 1–32 (2021). https://doi.org/10.1080/10643389.2021.1910003

  44. Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 (1) (2011). https://doi.org/10.1038/ncomms1251

  45. Aburto-Medina, A, Le, PH, MacLaughlin, S, Ivanova, E, “Diversity of Experimental Designs for the Fabrication of Antifungal Surfaces for the Built Environment.” Appl. Microbiol. Biotechnol., 105 (7) 2663–2674. https://doi.org/10.1007/s00253-021-11214-0 (2021)

    Article  CAS  Google Scholar 

  46. Youssef, K, de Oliveira, AG, Tischer, CA, Hussain, I, Roberto, SR, “Synergistic Effect of a Novel Chitosan/Silica Nanocomposites-Based Formulation Against Gray Mold of Table Grapes and its Possible Mode of Action.” Int. J. Biol. Macromol., 141 247–258. https://doi.org/10.1016/j.ijbiomac.2019.08.249 (2019)

    Article  CAS  Google Scholar 

  47. Kaegi, R, Sinnet, B, Zuleeg, S, et al. “Release of Silver Nanoparticles from Outdoor Facades.” Environ. Pollut., 158 (9) 2900–2905. https://doi.org/10.1016/j.envpol.2010.06.009 (2010)

    Article  CAS  Google Scholar 

  48. El-Saied, HAA, Ibrahim, AM, “Effective Fabrication and Characterization of Eco-friendly Nano Chitosan Capped Zinc Oxide Nanoparticles for Effective Marine Fouling Inhibition.” J. Environ. Chem. Eng., 8 (4) 103949. https://doi.org/10.1016/j.jece.2020.103949 (2020)

    Article  CAS  Google Scholar 

  49. Hernández-Valencia, CG, Román-Guerrero, A, Aguilar-Santamaría, Á, Cira, L, Shirai, K, “Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus).” Molecules, 24 (2) (2019). https://doi.org/10.3390/molecules24020219

  50. Cloutier, M, Mantovani, D, Rosei, F, “Antibacterial Coatings: Challenges, Perspectives, and Opportunities.” Trends Biotechnol., 33 (11) 637–652. https://doi.org/10.1016/j.tibtech.2015.09.002 (2015)

    Article  CAS  Google Scholar 

  51. Coneski, PN, Weise, NK, Fulmer, PA, Wynne, JH, “Development and Evaluation of Self-Polishing Urethane Coatings with Tethered Quaternary Ammonium Biocides.” Prog. Org. Coat., 76 (10) 1376–1386. https://doi.org/10.1016/j.porgcoat.2013.04.012 (2013)

    Article  CAS  Google Scholar 

  52. Jiao, Y, Niu, L, Ma, S, Li, J, Tay, FR, Chen, J, “Quaternary Ammonium-Based Biomedical Materials: State-of-the-art, Toxicological Aspects and Antimicrobial Resistance.” Prog. Polym. Sci., 71 53–90 (2017). https://doi.org/10.1016/j.progpolymsci.2017.03.001

  53. Bergek, J, Andersson Trojer, M, Mok, A, Nordstierna, L, “Controlled Release of Microencapsulated 2-n-octyl-4-isothiazolin-3-one From Coatings: Effect of Microscopic and Macroscopic Pores.” Colloids Surf. A Physicochem. Eng. Asp., 458 (1) 155–167. https://doi.org/10.1016/j.colsurfa.2014.02.057 (2014)

    Article  CAS  Google Scholar 

  54. Jämsä, S, Mahlberg, R, Holopainen, U, Ropponen, J, Savolainen, A, Ritschkoff, AC, “Slow Release of a Biocidal Agent from Polymeric Microcapsules for Preventing Biodeterioration.” Prog. Org. Coat., 76 (1) 269–276. https://doi.org/10.1016/j.porgcoat.2012.09.018 (2013)

    Article  CAS  Google Scholar 

  55. Goh, CH, Wan, P, Heng, S, Chan, LW, “Alginates as a Useful Natural Polymer for Microencapsulation and Therapeutic Applications.” Carbohydr. Polym., 88 (1) 1–12. https://doi.org/10.1016/j.carbpol.2011.11.012 (2012)

    Article  CAS  Google Scholar 

  56. Kumar, A, Vemula, PK, Ajayan, PM, John, G, “Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil.” Nat. Mater., 7 (3) 236–241. https://doi.org/10.1038/nmat2099 (2008)

    Article  CAS  Google Scholar 

  57. Khan, AG, Horner, JR CJ. US Patent 2007/0197807A1 - Nanosized Metal and Metal Oxide Particles as a Biocide in Roofing Coatings. 1(60):19–21 (2007)

  58. Hill, BR, Watson, Sr TF, Triplett, BL. US Patent 5024875 - Antimicrobial Microporous Coating. 1(12):14 (1991)

  59. Gladis, F, Eggert, A, Karsten, U, Schumann, R, “Prevention of Biofilm Growth on Man-Made Surfaces: Evaluation of Antialgal Activity of Two Biocides and Photocatalytic Nanoparticles.” Biofouling. J. Bioadhesion Biofilm Res., 26 (1) 89–101. https://doi.org/10.1080/08927010903278184 (2010)

    Article  CAS  Google Scholar 

  60. Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC, Kahru, A, “Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus.” Chemosphere, 71 (7) 1308–1316. https://doi.org/10.1016/J.CHEMOSPHERE.2007.11.047 (2008)

    Article  CAS  Google Scholar 

  61. Kiaune, L, Singhasemanon, N, “Pesticidal Copper (I) Oxide: Environmental Fate and Aquatic Toxicity.” Rev. Environ. Contam. Toxicol., 213 1–26. https://doi.org/10.1007/978-1-4419-9860-6_1 (2011)

    Article  CAS  Google Scholar 

  62. Brewer, GJ, “Risks of Copper and Iron Toxicity During Aging in Humans.” Chem. Res. Toxicol., 23 (2) 319–326 (2010)

    Article  CAS  Google Scholar 

  63. Ivask, A, George, S, Bondarenko, O, Kahru, A, Nano-Antimicrobials. 2012. https://doi.org/10.1007/978-3-642-24428-5

  64. Maillard, J-Y, Hartemann, P, “Silver as an Antimicrobial: Facts and Gaps in Knowledge.” Crit. Rev. Microbiol., 2012 (7828) 1–11. https://doi.org/10.3109/1040841X.2012.713323 (2015)

    Article  CAS  Google Scholar 

  65. Krongauz, V, “Diffusion in Polymers Dependence on Crosslink Density. Eyring Approach to Mechanism.” J. Therm. Anal. Calorim., 102 (2) 435–445. https://doi.org/10.1007/s10973-010-0922-6 (2010)

    Article  CAS  Google Scholar 

  66. Wu, Y, Joseph, S, Aluru, NR, “Effect of Cross-Linking on the Diffusion of Water, Ions, and Small Molecules in Hydrogels.” J. Phys. Chem. B., 113 (11) 3512–3520. https://doi.org/10.1021/jp808145x (2009)

    Article  CAS  Google Scholar 

  67. Andersson Trojer, M, Nordstierna, L, Bergek, J, Blanck, H, Holmberg, K, Nydén, M, “Use of Microcapsules as Controlled Release Devices for Coatings.” Adv. Colloid Interface Sci., 222 18–43. https://doi.org/10.1016/j.cis.2014.06.003 (2015)

    Article  CAS  Google Scholar 

  68. Wangler, TP, Zuleeg, S, Vonbank, R, et al. “Laboratory Scale Studies of Biocide Leaching from Façade Coatings.” Build Environ., 54 168–173. https://doi.org/10.1016/j.buildenv.2012.02.021 (2012)

    Article  Google Scholar 

  69. Hirsh, J, Fuster, V, “Guide to Anticoagulant Therapy. Part 1: Heparin. American Heart Association.” Circulation. 89 (3) 1449–1468 (1994). https://doi.org/10.1161/01.CIR.89.3.1449.

  70. Mattos, BD, Tardy, BL, Magalhães, WLE, Rojas, OJ, “Controlled Release for Crop and Wood Protection: Recent Progress Toward Sustainable and Safe Nanostructured Biocidal Systems.” J. Control Release., 262 (June) 139–150. https://doi.org/10.1016/j.jconrel.2017.07.025 (2017)

    Article  CAS  Google Scholar 

  71. Jämsä, S, Mahlberg, R, Ritschkoff, AC, Tenhu, H, “Screening of the Effect of Biocidal Agents Released from Poly (acrylic acid) Matrices on Mould Growth.” Wood Mater. Sci Eng., 7 (2) 59–68. https://doi.org/10.1080/17480272.2012.656702 (2012)

    Article  CAS  Google Scholar 

  72. Erich, SJF, Baukh, V, “Modelling Biocide Release Based on Coating Properties.” Prog. Org. Coat., 90 171–177. https://doi.org/10.1016/j.porgcoat.2015.10.009 (2016)

    Article  CAS  Google Scholar 

  73. Mahli, DM, Wegner, JM, Edward Glass, J, Phillips, DG, “Waterborne Latex Coatings of Color: I. Component Influences on Viscosity Decreases.” J. Coat. Technol. Res., 2 (8) 627–634. https://doi.org/10.1007/BF02774593 (2005)

    Article  CAS  Google Scholar 

  74. Mahli, DM, Wegner, JM, Edward Glass, J, Phillips, DG, “Waterborne Latex Coatings of Color: II. Surfactant Influences on Color Development and Viscosity.” J. Coat. Technol. Res., 2 (8) 635–647. https://doi.org/10.1007/BF02774593 (2005)

    Article  CAS  Google Scholar 

  75. Blanchette, RA, “A Review of Microbial Deterioration Found in Archaeological Wood from Different Environments.” Int. Biodeterior. Biodegradation., 46 (3) 189–204. https://doi.org/10.1016/S0964-8305(00)00077-9 (2000)

    Article  Google Scholar 

  76. Chen, F, Yang, X, Wu, Q, “Antifungal Capability of TiO2 Coated Film on Moist Wood.” Build Environ., 44 (5) 1088–1093. https://doi.org/10.1016/J.BUILDENV.2008.07.018 (2009)

    Article  Google Scholar 

  77. Pandey, P, Kiran, UV, “Degradation of Paints and Its Microbial Effect on Health and Environment.” J. Crit. Rev., 7 (19) 4879–4884 (2020)

    Google Scholar 

  78. Rabajczyk, A, Zielecka, M, Klapsa, W, Dziechciarz, A, “Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants.” Materials (Basel), 14 (9) (2021). https://doi.org/10.3390/ma14092161

  79. Urbanczyk, MM, Bester, K, Bollmann, UE, “Multi-Layered Approach to Determine Diffusion Coefficients Through Polymer Films: Estimating the Biocide Release From Paints.” Build Environ., 148 294–298. https://doi.org/10.1016/J.BUILDENV.2018.11.011 (2019)

    Article  Google Scholar 

  80. Bergek, J. Evaluation of Biocide Release from Modified Microcapsules. 2017. http://publications.lib.chalmers.se/records/fulltext/246897/246897.pdf

Download references

Acknowledgments

The funding for this work was provided by the Mitacs Accelerate Program in collaboration with TriMiS Inc, along with the Department of Chemical Engineering at McMaster University. We are especially grateful to Troy Corporation (Florham Park, NJ) for their contribution in conducting the resistance tests. We acknowledge Oligomaster Inc. and Dr. Mehdi Sanjari from TriMiS Inc. for providing their helpful inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew C. Higgins.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, A.S., Mafi, R. & Higgins, D.C. Formulation and testing of a slow-release antimicrobial paint: a case study of antifungi and antialgae activity for interior and exterior applications. J Coat Technol Res 20, 573–585 (2023). https://doi.org/10.1007/s11998-022-00691-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00691-1

Keywords

Navigation