Skip to main content
Log in

Dual-curable coatings obtained from multi-functional non-isocyanate polyurethane oligomers

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The growing concerns and impending regulations on the usage of monomeric isocyanates in the production of polyurethane resins have led to the introduction of alternative non-isocyanate polyurethane (NIPU) systems. Although two-component NIPU coatings based on the reaction of cyclic carbonates and aliphatic amines have emerged as a promising option, they are still associated with two significant drawbacks: lower crosslinking densities due to reduced functionality of the oligomers and low ambient-temperature reactivity. This study reports the utilization of a hybrid approach to address these drawbacks. Amine-functional NIPU oligomers (NI-PUPA) were synthesized by the reaction of cycloaliphatic amine functional compounds and multi-functional cyclic carbonates in an excess amine molar ratio. After mixing the NI-PUPAs with (3-glycidyloxypropyl) trimethoxysilane (GPTMS), a dual-curable coating could be achieved by ambient curing of amines and epoxies and moisture curing of alkoxy silanes. A comparative experimental design was implemented to evaluate the effect of an additional curing mechanism. The results revealed that the additional moisture curing led to faster ambient curing, faster development of properties, enhanced flexibility even at higher crosslinking densities, and better corrosion resistance. Such advancement could facilitate the future implementation of NIPUs in high-performance ambient-curing coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Janik, H, Sienkiewicz, M, Kucinska-Lipka, J, “Polyurethanes.” In: Handbook of Thermoset Plastics, pp. 253–295. Elsevier. https://doi.org/10.1016/B978-1-4557-3107-7.00009-9 (2014).

  2. Frick, M, Isaksson, M, Bjorkner, B, Hindsen, M, Ponten, A, Bruze, M, “Occupational Allergic Contact Dermatitis in a Company Manufacturing Boards Coated with Isocyanate Lacquer.” Contact Dermatitis, 48 255–260. https://doi.org/10.1034/j.1600-0536.2003.00107.x (2003)

    Article  CAS  Google Scholar 

  3. Goossens, A, Detienne, T, Bruze, M, “Occupational Allergic Contact Dermatitis Caused by Isocyanates.” Contact Dermatitis, 47 304–308. https://doi.org/10.1034/j.1600-0536.2002.470509.x (2002)

    Article  CAS  Google Scholar 

  4. Rokicki, G, Parzuchowski, PG, Mazurek, M, “Non-isocyanate Polyurethanes: Synthesis, Properties, and Applications.” Polym. Adv. Technol., 26 707–761. https://doi.org/10.1002/pat.3522 (2015)

    Article  CAS  Google Scholar 

  5. Kathalewar, MS, Joshi, PB, Sabnis, AS, Malshe, VC, “Non-isocyanate Polyurethanes: From Chemistry to Applications.” RSC Adv., 3 4110. https://doi.org/10.1039/c2ra21938g (2013)

    Article  CAS  Google Scholar 

  6. Neffgen, S, Keul, H, Höcker, H, “Cationic Ring-Opening Polymerization of Trimethylene Urethane: A Mechanistic Study.” Macromolecules, 30 1289–1297. https://doi.org/10.1021/ma9610774 (1997)

    Article  CAS  Google Scholar 

  7. Li, S, Zhao, J, Zhang, Z, Zhang, J, Yang, W, “Aliphatic Thermoplastic Polyurethane-Ureas and Polyureas Synthesized Through a Non-isocyanate Route.” RSC Adv., 5 6843–6852. https://doi.org/10.1039/C4RA12195C (2015)

    Article  CAS  Google Scholar 

  8. Kotanen, S, Laaksonen, T, Sarlin, E, “Feasibility of Polyamines and Cyclic Carbonate Terminated Prepolymers in Polyurethane/Polyhydroxyurethane Synthesis.” Mater. Today Commun., 23 100863. https://doi.org/10.1016/j.mtcomm.2019.100863 (2020)

    Article  CAS  Google Scholar 

  9. Blattmann, H, Fleischer, M, Bähr, M, Mülhaupt, R, “Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide.” Macromol. Rapid Commun., 35 1238–1254. https://doi.org/10.1002/marc.201400209 (2014)

    Article  CAS  Google Scholar 

  10. Levina, MA, Krasheninnikov, VG, Zabalov, MV, Tiger, RP, “Nonisocyanate Polyurethanes from Amines and Cyclic Carbonates: Kinetics and Mechanism of a Model Reaction.” Polym. Sci. Ser. B, 56 139–147. https://doi.org/10.1134/S1560090414020092 (2014)

    Article  CAS  Google Scholar 

  11. Figovsky, OL, Shapovalov, L, Leykin, A, Birukova, O, Potashnikova, R, “Progress in Elaboration of Nonisocyanate Polyurethanes Based on Cyclic Carbonates.” Int. Lett. Chem. Phys. Astron., 3 52–66. https://doi.org/10.18052/www.scipress.com/ILCPA.3.52 (2013)

    Article  Google Scholar 

  12. Khatoon, H, Iqbal, S, Irfan, M, Darda, A, Kanwar Rawat, N, “A Review on the Production, Properties and Applications of Non-isocyanate Polyurethane: A Greener Perspective.” Prog. Org. Coat., 154 106124. https://doi.org/10.1016/j.porgcoat.2020.106124 (2021)

    Article  CAS  Google Scholar 

  13. Yu, A, Setien, R, Sahouani, J, Docken, J, Wbster, D, “Catalyzed Non-isocyanate Polyurethane (NIPU) Coatings from Biobased Poly(Cyclic Carbonates).” J. Coat. Technol. Res., 16 41–57. https://doi.org/10.1007/s11998-018-0135-7 (2019)

    Article  CAS  Google Scholar 

  14. Figovsky, O, Leykin, A, “Synthesis and Application of Nonisocyanate Polyurethanes.” Chem. Chem. Technol., 10 553–559. https://doi.org/10.23939/chcht10.04si.553 (2016)

    Article  CAS  Google Scholar 

  15. Wang, C, Wu, Z, Tang, L, Qu, J, “Synthesis and Properties of Cyclic Carbonates and Non-isocyanate Polyurethanes Under Atmospheric Pressure.” Prog. Org. Coat., 127 359–365. https://doi.org/10.1016/j.porgcoat.2018.11.040 (2019)

    Article  CAS  Google Scholar 

  16. Asemani, HR, Mannari, V, “Synthesis and Evaluation of Non-isocyanate Polyurethane Polyols for Heat-Cured Thermoset Coatings.” Prog. Org. Coat., 131 247–258. https://doi.org/10.1016/j.porgcoat.2019.02.036 (2019)

    Article  CAS  Google Scholar 

  17. Wazarkar, K, Kathalewar, M, Sabnis, A, “Development of Epoxy-Urethane Hybrid Coatings via Non-isocyanate Route.” Eur. Polym. J., 84 812–827. https://doi.org/10.1016/j.eurpolymj.2016.10.021 (2016)

    Article  CAS  Google Scholar 

  18. Cornille, A, Auvergne, R, Figovsky, O, Boutevin, B, Caillol, S, “A Perspective Approach to Sustainable Routes for Non-isocyanate Polyurethanes.” Eur. Polym. J., 87 535–552. https://doi.org/10.1016/j.eurpolymj.2016.11.027 (2017)

    Article  CAS  Google Scholar 

  19. Byczyński, Ł, Dutkiewicz, M, Maciejewski, H, “Synthesis and Properties of High-Solids Hybrid Materials Obtained from Epoxy Functional Urethanes and Siloxanes.” Prog. Org. Coat., 84 59–69. https://doi.org/10.1016/j.porgcoat.2015.02.017 (2015)

    Article  CAS  Google Scholar 

  20. Ecochard, Y, Leroux, J, Boutevin, B, Auvergne, R, Caillol, S, “From Multi-functional Siloxane-Based Cyclic Carbonates to Hybrid Polyhydroxyurethane Thermosets.” Eur. Polym. J., 120 109280. https://doi.org/10.1016/j.eurpolymj.2019.109280 (2019)

    Article  CAS  Google Scholar 

  21. Asemani, H, Zareanshahraki, F, Mannari, V, “Design of Hybrid Nonisocyanate Polyurethane Coatings for Advanced Ambient Temperature Curing Applications.” J. Appl. Polym. Sci., 136 47266. https://doi.org/10.1002/app.47266 (2019)

    Article  CAS  Google Scholar 

  22. Zareanshahraki, F, Asemani, HR, Skuza, J, Mannari, V, “Synthesis of Non-isocyanate Polyurethanes and Their Application in Radiation-Curable Aerospace Coatings.” Prog. Org. Coat., 138 105394. https://doi.org/10.1016/j.porgcoat.2019.105394 (2020)

    Article  CAS  Google Scholar 

  23. Asemani, HR, Mannari, V, “Ambient Temperature and UV-Cured Hybrid Coatings from Acetoacetylated Non-isocyanate Polyurethanes.” J. Coat. Technol. Res., 18 469–488. https://doi.org/10.1007/s11998-020-00425-1 (2021)

    Article  CAS  Google Scholar 

  24. Shaik, A, Narayan, R, Raju, KVSN, “Synthesis and Properties of Siloxane-Crosslinked Polyurethane-Urea/Silica Hybrid Films from Castor Oil.” J. Coat. Technol. Res., 11 397–407. https://doi.org/10.1007/s11998-013-9548-5 (2014)

    Article  CAS  Google Scholar 

  25. Malucelli, G, Amerio, E, Minelli, M, Angelis, MGD, “Epoxy–Siloxane Hybrid Coatings by a Dual-Curing Process.” Adv. Polym. Technol., 28 77–85. https://doi.org/10.1002/adv.20149 (2009)

    Article  CAS  Google Scholar 

  26. Díaz, I, Chico, B, de la Fuente, D, Simancas, J, Vega, JM, Morcillo, M, “Corrosion Resistance of New Epoxy–Siloxane Hybrid Coatings. A Laboratory Study.” Prog. Org. Coat., 69 278–286. https://doi.org/10.1016/j.porgcoat.2010.06.007 (2010)

    Article  CAS  Google Scholar 

  27. Byczyński, Ł, Dutkiewicz, M, Januszewski, R, Wrona, P, Pilch-Pitera, B, “Epoxy Coatings with Increased Hydrophobicity Modified by Isocyanurate Containing Siloxane.” Mater. Today Commun., 24 101001. https://doi.org/10.1016/j.mtcomm.2020.101001 (2020)

    Article  CAS  Google Scholar 

  28. Zhang, C, Huang, K-C, Wang, H, Zhou, Q, “Anti-corrosion Non-isocyanate Polyurethane Polysiloxane Organic/Inorganic Hybrid Coatings.” Prog. Org. Coat., 148 105855. https://doi.org/10.1016/j.porgcoat.2020.105855 (2020)

    Article  CAS  Google Scholar 

  29. Liu, C, Wu, J, Zhou, X, Zhou, X, Wu, Z, Qu, J, “Synthesis and Properties of Poly(dimethylsiloxane)-Based Non-isocyanate Polyurethanes Coatings with Good Anti-smudge Properties.” Prog. Org. Coat., 163 106690. https://doi.org/10.1016/j.porgcoat.2021.106690 (2022)

    Article  CAS  Google Scholar 

  30. Kathalewar, M, Sabnis, A, “Preparation of Novel CNSL-Based Urethane Polyol Via Nonisocyanate Route: Curing with Melamine-Formaldehyde Resin and Structure-Property Relationship.” J. Appl. Polym. Sci.,. https://doi.org/10.1002/app.41391 (2015)

    Article  Google Scholar 

  31. Lee, A, Deng, Y, “Green Polyurethane from Lignin and Soybean Oil Through Non-isocyanate Reactions.” Eur. Polym. J., 63 67–73. https://doi.org/10.1016/j.eurpolymj.2014.11.023 (2015)

    Article  CAS  Google Scholar 

  32. Aoyagi, N, Furusho, Y, Endo, T, “Effective Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides by Phosphonium Iodides as Catalysts in Alcoholic Solvents.” Tetrahedron Lett., 54 7031–7034. https://doi.org/10.1016/j.tetlet.2013.10.068 (2013)

    Article  CAS  Google Scholar 

  33. Yu, M, Lu, Q, Cui, Z, Wang, X, Ge, F, Wang, X, “Siloxane-Epoxy Composite Coatings for Enhanced Resistance to Large Temperature Variations.” Prog. Org. Coat., 139 105457. https://doi.org/10.1016/j.porgcoat.2019.105457 (2020)

    Article  CAS  Google Scholar 

  34. Asemani, HR, Luo, L, Mannari, V, “Corrosion-Resistant Organic-Inorganic Hybrid Pretreatments Obtained by UV-Initiated Process Suitable for Primer-Less Coating Systems.” Prog. Org. Coat., 147 105878. https://doi.org/10.1016/j.porgcoat.2020.105878 (2020)

    Article  CAS  Google Scholar 

  35. Wang, T, Segura, JJ, Graversen, E, Weinell, C, Dam-Johansen, K, Kiil, S, “Simultaneous Tracking of Hardness, Reactant Conversion, Solids Concentration, and Glass Transition Temperature in Thermoset Polyurethane Coatings.” J. Coat. Technol. Res., 18 349–359. https://doi.org/10.1007/s11998-020-00407-3 (2021)

    Article  CAS  Google Scholar 

  36. Cakić, S, Caslav, L, Jakov, S, Ristic, N, Takic, L, Miroljub, B, Gligoric, M, “Effects of the Acrylic Polyol Structure and the Selectivity of the Employed Catalyst on the Performance of Two-Component Aqueous Polyurethane Coatings.” Sensors, 7 (3) 308–318. https://doi.org/10.3390/s7030308 (2007)

    Article  Google Scholar 

  37. Urdl, K, Kandelbauer, A, Kern, W, Müller, U, Thebault, M, Zikulnig-Rusch, E, “Self-Healing of Densely Crosslinked Thermoset Polymers—A Critical Review.” Prog. Org. Coat., 104 232–249. https://doi.org/10.1016/j.porgcoat.2016.11.010 (2017)

    Article  CAS  Google Scholar 

  38. Chen, J, Kinloch, AJ, Sprenger, S, Taylor, AC, “The Mechanical Properties and Toughening Mechanisms of an Epoxy Polymer Modified with Polysiloxane-Based Core-Shell Particles.” Polymer, 54 4276–4289. https://doi.org/10.1016/j.polymer.2013.06.009 (2013)

    Article  CAS  Google Scholar 

  39. Ananda Kumar, S, Sankara-Narayanan, TSN, “Thermal Properties of Siliconized Epoxy Interpenetrating Coatings.” Prog. Org. Coat., 45 323–330. https://doi.org/10.1016/S0300-9440(02)00062-0 (2002)

    Article  CAS  Google Scholar 

Download references

Funding

The fund was funded by Strategic Environmental Research and Development Program (Grant No. 16WP02-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mannari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was selected for the Best Paper Award at the CoatingsTech 2021 conference, organized by the American Coatings Association in Pittsburg, PA, June 28th–29th.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemani, H.R., Mannari, V. Dual-curable coatings obtained from multi-functional non-isocyanate polyurethane oligomers. J Coat Technol Res 19, 1393–1407 (2022). https://doi.org/10.1007/s11998-022-00614-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00614-0

Keywords

Navigation