Skip to main content
Log in

Influence of deposition parameters on the behavior of nitro-cobalt-based and Ti-hexafluoride-based pretreatments

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Two different chemical pretreatments for hot-dip galvanized steel, typically used in the coil coating field, were considered comparing their electrochemical behavior (electrochemical impedance spectroscopy (EIS), potentiodynamic curves) after a morphological characterization of the deposited films. The wet and dry adhesion of the following deposited paint is tested employing neutral salt spray chamber test (NSST) and pull-off test. Despite these technologies being widely adopted in industrial plants, the literature lacks some relevant research about the actual improvement in durability, especially in the case of nitro-cobalt based conversion. This paper analyzes the factors affecting the protection provided by the deposited film and varying the principal production parameter, the immersion time in the chemical conversion solution, an optimization study was carried out. The better behavior of the titanium hexafluoride-based artificial conversions, with respect to the nitro-cobalt one, is highlighted. Such treatment analyzed as bare surface gives higher impedance modulus and lower corrosion current density compared to the second one. For both the technologies, the uselessness of longer treatment periods in terms of performance improvement is found. The results obtained from the electrochemical characterization are in accordance with the technological test on the painted samples, such as NSST, where the delamination rate is significantly higher for the substrate treated employing a nitro-cobalt-based bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. European Coil Coating Association (ECCA), www.prepaintedmetal.eu (accessed on 20 April 2021)

  2. Huang, YH, Wang, J, “Prediction of Coating Adhesion Loss Due to Stretching.” Int. J. Adhes. Adhes., 40 49–55 (2013)

    Article  CAS  Google Scholar 

  3. Floch, V, Doleyres, Y, Amand, S, Aufray, M, Pébère, N, Verchère, D, “Adherence Measurements and Corrosion Resistance in Primer/Hot-Dip Galvanized Steel Systems.” J. Adhes., 89 339–357 (2013)

    Article  CAS  Google Scholar 

  4. Deflorian, F, Fedrizzi, L, Rossi, S, “Effects of Mechanical Deformation on the Protection Properties of Coil Coating Products.” Corros. Sci., 42 (7) 1283–1301 (2000)

    Article  CAS  Google Scholar 

  5. Saarimaa, S, Manni, J, Kauppinen, E, Markkula, A, Juhanoja, J, Skrifvars, BJ, “Cross-Sectional High-Resolution Microscopy of Thin Pretreatment Layers on Hot Dip Galvanized Steel.” Surf. Interface Anal., 46 620–624 (2014)

    Article  CAS  Google Scholar 

  6. Hernández, MA, Galliano, F, Landolt, D, “Mechanism of Cathodic Delamination Control of Zinc-Aluminum Phosphate Pigment in Waterborne Coatings.” Corros. Sci., 46 (9) 2281–2300 (2004)

    Article  Google Scholar 

  7. American Galvanizers Association, Hot Dip Galvanizing for Corrosion Protection, A Specifier’s Guide. American Galvanizers Association, Colorado (2006)

    Google Scholar 

  8. https://ec.europa.eu/eurostat/web/environment/hazardous-substances (accessed on 20 March 2021)

  9. Barbucci, A, Delucchi, M, Cerisola, G, “Study of Chromate-Free Pretreatments and Primers for the Protection of Galvanized Steel Sheets.” Prog. Org. Coat., 33 (2) 131–138 (1998)

    Article  CAS  Google Scholar 

  10. Hernandez-Alvarado, LA, Hernandez, LS, Rodriguez-Reyna, SL, “Evaluation of Corrosion Behavior of Galvanized Steel Treated with Conventional Conversion Coating and a Chromate-Free Organic Inhibitor.” Int. J. Corros., 21 1–8 (2012)

    Article  Google Scholar 

  11. Gao, Z, Zhang, D, Li, X, Jiang, S, Zhang, Q, “Current Status, Opportunities and Challenges in Chemical Conversion Coatings for Zinc.” Colloids Surf. A: Physicochem. Eng. Asp., 546 221–236 (2018)

    Article  CAS  Google Scholar 

  12. Adhikari, S, Unocic, KA, Zhai, Y, Frankel, GS, Zimmerman, J, Fristad, W, “Hexafluorozirconic Acid-Based Surface Pretreatments: Characterization and Performance Assessment.” Electrochim. Acta, 56 (4) 1912–1924 (2011)

    Article  CAS  Google Scholar 

  13. http://europa.eu/rapid/press-release_IP-10-1465_en.htm?locale=en (accessed on 29 April 2021)

  14. http://www.waterworld.com/articles/iww/print/volume-14/issue-6/features/adapting-to-more-stringent-cooling-water-discharge-guidelines.html (accessed on 29 April 2021)

  15. Jegannathan, S, Sankara Narayanan, TSN, Ravichandran, K, Rajeswari, S, “Evaluation of the Corrosion Resistance of Phosphate Coatings Obtained by Anodic Electrochemical Treatment.” Prog. Org. Coat., 57 392–399 (2006)

    Article  CAS  Google Scholar 

  16. Qian, X, Zhan, W, Pan, J, Liu, Y, Huang, F, Wang, B, “Improving the Corrosion Resistance of LY12 Aluminum Alloy via a Novel Mo–Zr–Ti Composite Conversion Coating.” Mater. Res. Express, 8 036403 (2021)

    Article  CAS  Google Scholar 

  17. Milosev, I, Frankel, GS, “Review—Conversion Coatings Based on Zirconium and/or Titanium.” J. Electrochem. Soc., 165 (3) 127–144 (2018)

    Article  Google Scholar 

  18. Ota, Y, Kojima, T, “Surface Treatment Technologies of Aluminum Alloy for Automobiles.” Kobelco Technol. Rev., 35 61 (2017)

    CAS  Google Scholar 

  19. Wang, S, Xu, S, “Ti/Cr(III) Conversion Coating on Aluminium Foil for Lithium-Ion Battery Package.” Surf. Eng., 37 (3) 365–372 (2021)

    Article  CAS  Google Scholar 

  20. Qiu, P, Lu, F, Wang, S, Zhong, H, Cao, Z, “Characterisation and Anti-corrosion Property of Ti Conversion Coating on Manganese Surface.” Corros. Eng., Sci. Technol., 55 (1) 27–34 (2020)

    Article  CAS  Google Scholar 

  21. Fockaert, LI, Ankora, MVE, Van Dam, JPB, Pletincx, S, Yilmaz, A, Boelen, B, “Effect of Organic Additives in Fluoacid-Based Ti and Zr-Treatments for Galvanized Steel on the Stability of a Polymer Coated Interface.” Prog. Org. Coat., 146 (April) 105738 (2020)

    Article  CAS  Google Scholar 

  22. Fockaert, LI, Taheri, P, Abrahami, ST, Boelen, B, Terryn, H, Mol, JMC, “Zirconium-Based Conversion Film Formation on Zinc, Aluminium and Magnesium Oxides and Their Interactions with Functionalized Molecules.” Appl. Surf. Sci., 423 817–828 (2017)

    Article  CAS  Google Scholar 

  23. Fockaert, LI, Pletincx, S, Boelen, B, Hauffman, T, Terryn, H, Mol, JMC, “Effect of Zirconium-Based Conversion Treatments of Zinc, Aluminium and Magnesium on the Chemisorption of Ester-Functionalized Molecules.” Appl. Surf. Sci., 508 145199–145210 (2020)

    Article  CAS  Google Scholar 

  24. Harvey, TG, “Cerium-Based Conversion Coatings on Aluminium Alloys: A Process Review.” Corros. Eng., Sci. Technol., 48 (4) 248–269 (2013)

    Article  CAS  Google Scholar 

  25. Forsyth, M, Seter, M, Tan, MY, Hinton, B, “Recent Developments in Corrosion Inhibitors Based on Rare Earth Metal Compounds.” Corros. Eng., Sci. Technol., 49 (2) 130–135 (2014)

    Article  CAS  Google Scholar 

  26. Karmaschek, U, Roland, A, Vennschott, H, Wennemann, H, “Chromium-Free Conversion Coating Treatment of Aluminum.” US Patent 5,584,946, 1996

  27. Tomlinson, CE, “Chromate-Free Conversion Coatings for Metals.” US Patent 5,759,244, 1998

  28. Giles, TR, Goodreau, BH, Fristad, WE, Kroemer, J, Frank, M, “An Update of New Conversion Coating for the Automotive Industry.” SAE Int. J. Mater. Manuf., 1 (1) 575–581 (2009)

    Article  Google Scholar 

  29. Giles, TR, Vonk, DR, Favero, SR, The Next Generation of Conversion Coatings, Henkel Corporation, Sao Paulo, pp. 172–181 (2012)

    Google Scholar 

  30. Saarimaa, V, Kauppinen, E, Markkula, A, Juhanoja, J, Skrifvars, BJ, Steen, P, “Microscale Distribution of Ti-Based Conversion Layer on Hot Dip Galvanized Steel.” Surf. Coat. Technol., 206 4173–4179 (2012)

    Article  CAS  Google Scholar 

  31. Tsai, YT, Hou, KH, Bai, CY, Lee, JL, Ger, MD, “The Influence on Immersion Time of Titanium Conversion Coatings on Electrogalvanized Steel.” Thin Solid Films, 518 (24) 7541–7544 (2010)

    Article  CAS  Google Scholar 

  32. Saarimaa, V, Markkula, A, Juhanoja, J, Skrifvars, BJ, “Improvement of Barrier Properties of Cr-Free Pretreatments for Coil-Coated Products.” J. Coat. Technol. Res., 12 (4) 721–730 (2015)

    Article  CAS  Google Scholar 

  33. Zhu, L, Yang, F, Ding, N, “Corrosion Resistance of the Electro-Galvanized Steel Treated with Titanium Conversion Solution.” Surf. Coat. Technol., 201 (18) 7829–7834 (2007)

    Article  CAS  Google Scholar 

  34. Bianco, M, “The Coupled Galvanizing and Painting Line at Marcegaglia Ravenna.” MPT Int., 10 62–66 (2015)

    Google Scholar 

  35. Zhu, W, Li, W, Mu, S, Fu, N, Liao, Z, “Comparative Study on Ti/Zr/V and Chromate Conversion Treated Aluminum Alloys: Anti-corrosion Performance and Epoxy Coating Adhesion Properties.” Appl. Surf. Sci., 405 157–168 (2017)

    Article  Google Scholar 

  36. Tomachuk, CR, Elsner, CI, Di Sarli, AR, “Electrochemical Characterization of Chromate Free Conversion Coatings on Electrogalvanized Steel.” Mater. Res., 17 (1) 61–68 (2014)

    Article  CAS  Google Scholar 

  37. Wilcox, GD, Wharton, JA, “A Review of Chromate-Free Passivation Treatments for Zinc and Zinc Alloys.” Trans. IMF, 75 (4) B140-146 (1997)

    Article  CAS  Google Scholar 

  38. UNI 10346:2015, Continuously Hot-Dip Coated Steel Flat Products for Cold Forming—Technical Delivery Conditions. Ente Italiano di normazione, Milano (2015), www.store.uni.com

  39. Condorcoat NB 100 Complex Oxide Convertion Coating. Available online: https://condoroil.com/docs_skt_imgs/SK_TECH_prod/St-%20Condorcoat%20NB%20100%20%20%20%20Rev.%2002.15.pdf (accessed on 20 April 2021)

  40. http://tds.henkel.com/tds5/Studio/ShowPDF/243%20NEW-EN?pid=BONDERITE%20M-NT%201455T&format=MTR&subformat=BOND&language=EN&plant=WERCS (accessed on 20 April 2021)

  41. Klimow, G, Fink, N, Grundmeier, G, “Electrochemical Studies of the Inhibition of the Cathodic Delamination of Organically Coated Galvanised Steel by Thin Conversion Films.” Electrochim. Acta, 53 (3) 1290–1299 (2007)

    Article  CAS  Google Scholar 

  42. Nelson, D, Alkyds and Polyesters in Paint and Coating Testing Manual 15th. Edition of the Gardner-Sward Handbook, ed. J. Koleske, West Conshohocken (2012)

  43. ASTM B117-19, Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International, West Conshohocken (2019), www.astm.org

  44. ASTM D4541-17, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM International, West Conshohocken (2017), www.astm.org

  45. Sheppard, L, Seidel, R, “Chromium-Free Pre-treatment for Coil Coating.” Millenium Steel, 31 275–278 (2005)

    Google Scholar 

  46. Deflorian, F, Rossi, S, Fedrizzi, L, Bonora, PL, “EIS Study of Organic Coating on Zinc Surface Pretreated with Environmentally Friendly Products.” Prog. Org. Coat., 52 (4) 271–279 (2005)

    Article  CAS  Google Scholar 

  47. Mayne, JEO, “Mechanisms of Protection by Paints.” Shreir’s Corros., 4 2666–2677 (2010)

    Article  Google Scholar 

  48. Le Manchet, S, Verchère, D, Landoulsi, J, “Effects of Organic and Inorganic Treatment Agents on the Formation of Conversion Layer on Hot-Dip Galvanized Steel: An X-ray Photoelectron Spectroscopy Study.” Thin Solid Films, 520 2009–2016 (2012)

    Article  Google Scholar 

  49. Verdier, S, Delalande, S, van der Laak, N, Metson, J, Dalard, F, “Monochromatized X-ray Photoelectron Spectroscopy of the AM60 Magnesium Alloy Surface After Treatments in Fluoride-Based Ti and Zr Solutions.” Surf. Interface Anal., 37 509–516 (2005)

    Article  CAS  Google Scholar 

  50. Boshkov, N, Petrov, K, Raichevski, G, “Corrosion Behavior and Protective Ability of Multilayer Galvanic Coatings of Zn and Zn–Mn Alloys in Sulfate Containing Medium.” Surf. Coat. Technol., 200 (20–21) 5995–6001 (2006)

    Article  CAS  Google Scholar 

  51. Fink, N, Wilson, B, Grundmeier, G, “Formation of Ultra-Thin Amorphous Conversion Films on Zinc Alloy Coatings, Part 1. Composition and Reactivity of Native Oxides on ZnAl (0.05%) Coatings.” Electrochim. Acta, 51 (14) 2956–2963 (2006)

    Article  CAS  Google Scholar 

  52. ASTM D1654-08(2016)e1, Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments. ASTM International, West Conshohocken (2016), www.astm.org

Download references

Acknowledgments

The authors gratefully acknowledge MARCEGAGLIA-Ravenna, in particular Ing. Antonio Bonoli for the samples produced, the material provided, and for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cristoforetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristoforetti, A., Fedel, M., Deflorian, F. et al. Influence of deposition parameters on the behavior of nitro-cobalt-based and Ti-hexafluoride-based pretreatments. J Coat Technol Res 19, 859–873 (2022). https://doi.org/10.1007/s11998-021-00563-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00563-0

Keywords

Navigation