Skip to main content

Advertisement

Log in

Amphiphilic marine coating systems of self-stratified PDMS-PEG surfaces with an epoxy-polyurethane matrix

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Marine coatings protect submerged surfaces from the negative effects of biofouling. In this work, we demonstrate a new method to prepare self-stratified, amphiphilic glycidyl-carbamate (GC)-based (epoxy urethane-based) coatings (AmpSiGC coatings) that have fouling-release properties making them suitable for marine use. The prepared coating systems are unique and durable in character as the bulk coating takes advantage of both epoxy and urethane functionalities while the surface is comprised of both hydrophilic and hydrophobic domains, granting it an amphiphilic characteristic. The experimental approach aimed to evaluate several factors that influence coating performance, including molecular weight of poly (ethylene glycol) (PEG) and PDMS moieties, ratio of hydrophobic (PDMS) and hydrophilic (PEG) components in the system, and the effect of different curing agents. The results demonstrated that polymeric chains of 10,000 \({\overline{M} }_{n}\) PDMS and 750 \({\overline{M} }_{n}\) PEG at 10–15 wt.% each offer substantially improved or comparable fouling-release performance in comparison to commercial marine coatings. This paper reports on the facile synthesis and characterization of the GC resin and GC prepolymers using FTIR and epoxy titrations; surface characterization of the coatings using ATR-FTIR, XPS, and AFM; and fouling-release assessment of the surfaces using laboratory biological assays with the barnacle Amphibalanus amphitrite, the algae Ulva linza and Navicula incerta, and the bacteria Cellulophaga lytica. Several of the AmpSiGC coatings exhibited promising performance, which were better or comparable to the internal and commercial reference coatings. The performance of the systems was dependent on all of the factors considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2020 American Coatings Association

Scheme 1

Reproduced with permission from reference 60. Copyright 2020 American Coatings Association

Fig. 2

reproduced with permission from reference 60. Copyright 2020 American Coatings Association

Fig. 3
Fig. 4
Fig. 5

reproduced with permission from reference 60. Copyright 2020 American Coatings Association

Fig. 6

reproduced with permission from reference 60. Copyright 2020 American Coatings Association

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 (1) 244–244 (2011)

    Article  CAS  Google Scholar 

  2. Lejars, M, Margaillan, A, Bressy, C, “Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings.” Chem. Rev., 112 (8) 4347–4390 (2012)

    Article  CAS  Google Scholar 

  3. Callow, ME, Callow, JE, “Marine Biofouling: A Sticky Problem.” Biologist, 49 (1) 10–14 (2002)

    Google Scholar 

  4. Schultz, MP, Bendick, JA, Holm, ER, Hertel, WM, “Economic Impact of Biofouling on a Naval Surface Ship.” Biofouling, 27 (1) 87–98 (2011)

    Article  CAS  Google Scholar 

  5. Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50 (2) 75–104 (2004)

    Article  CAS  Google Scholar 

  6. Konstantinou, IK, Albanis, TA, “Worldwide Occurrence and Effects of Antifouling Paint Booster Biocides in the Aquatic Environment: A Review.” Environ. Int., 30 (2) 235–248 (2004)

    Article  CAS  Google Scholar 

  7. Wyszogrodzka, M, Haag, R, “Synthesis and Characterization of Glycerol Dendrons, Self-Assembled Monolayers on Gold: A Detailed Study of Their Protein Resistance.” Biomacromolecules, 10 (5) 1043–1054 (2009)

    Article  CAS  Google Scholar 

  8. Sommer, S, Ekin, A, Webster, DC, Stafslien, SJ, Daniels, J, VanderWal, LJ, Thompson, SEM, Callow, ME, Callow, JA, “A Preliminary Study on the Properties and Fouling-Release Performance of Siloxane–Polyurethane Coatings Prepared from Poly(dimethylsiloxane) (PDMS) Macromers.” Biofouling, 26 (8) 961–972 (2010)

    Article  CAS  Google Scholar 

  9. Bodkhe, RB, Thompson, SEM, Yehle, C, Cilz, N, Daniels, J, Stafslien, SJ, Callow, ME, Callow, JA, Webster, DC, “The Effect of Formulation Variables on Fouling-Release Performance of Stratified Siloxane–Polyurethane Coatings.” J. Coat. Technol. Res., 9 (3) 235–249 (2012)

    Article  CAS  Google Scholar 

  10. Schultz, MP, Swain, GW, “The Influence of Biofilms on Skin Friction Drag.” Biofouling, 15 (1–3) 129–139 (2000)

    Article  CAS  Google Scholar 

  11. Selim, MS, Shenashen, MA, Fathalla, NA, Elmarakbi, A, El-Safty, S, “In Situ Fabrication of One-Dimensional-Based Lotus-Like Silicone/γ–Al2O3 Nanocomposites for Marine Fouling Release Coatings.” Chem. Select, 24 (30) 9691–9700 (2017)

    Google Scholar 

  12. Selim, MS, Shenashen, MA, El-Safty, SA, Higazy, SA, Selim, MM, Isago, H, Elmarakbi, A, “Recent Progress in Marine Foul-Release Polymeric Nanocomposite Coatings.” Prog. Mater. Sci., 87 1–32 (2017)

    Article  CAS  Google Scholar 

  13. Selim, MS, Shenashen, MA, Elmarakbi, A, Fatthallah, NA, Hasegawa, S-I, El-Safty, SA, “Synthesis of Ultrahydrophobic and Thermally Stable Inorganic–Organic Nanocomposites for Self-cleaning Foul Release Coatings.” Chem. Eng. J., 320 653–666 (2017)

    Article  CAS  Google Scholar 

  14. Selim, MS, Elmarakbi, A, Azzam, AM, Shenashen, MA, El-Saeed, AM, El-Safty, SA, “Eco-friendly Design of Superhydrophobic Nano-Magnetite/Silicone Composites for Marine Foul-Release Paints.” Prog. Org. Coat., 116 21–34 (2018)

    Article  CAS  Google Scholar 

  15. Selim, MS, Yang, H, El-Safty, SA, Fatthallah, NA, Shenashen, MA, Wang, FQ, Huang, Y, “Superhydrophobic Coating of Silicone/β–MnO2 Nanorod Composite for Marine Antifouling.” Colloid. Surf. A Physicochem. Eng. Aspect., 570 518–530 (2019)

    Article  CAS  Google Scholar 

  16. Selim, MS, El-Safty, SA, Azzam, AM, Shenashen, MA, El-Sockary, MA, Abo Elenien, OM, “Superhydrophobic Silicone/TiO2–SiO2 Nanorod-Like Composites for Marine Fouling Release Coatings.” ChemistrySelect, 4 (12) 3395–3407 (2019)

    Article  CAS  Google Scholar 

  17. Selim, MS, El-Safty, SA, Abbas, A, Shenashen, MA, "Facile Design of Graphene Oxide-ZnO Nanorod-Based Ternary Nanocomposite as a Superhydrophobic and Corrosion-Barrier Coating." Colloid. Surf. A Physcochem. Eng. Aspect., 611 125793 (2021)

  18. Cavas, L, Yildiz, PG, Mimigianni, P, Sapalidis, A, Nitodas, S, “Reinforcement Effects of Multiwall Carbon Nanotubes and Graphene Oxide on PDMS Marine Coatings.” J. Coat. Technol. Res., 15 (1) 105–120 (2018)

    Article  CAS  Google Scholar 

  19. Beigbeder, A, Degee, P, Conlan, SL, Mutton, RJ, Clare, AS, Pettitt, ME, Callow, ME, Callow, JA, Dubois, P, “Preparation and Characterisation of Silicone-Based Coatings Filled with Carbon Nanotubes and Natural Sepiolite and Their Application as Marine Fouling-Release Coatings.” Biofouling, 24 (4) 291–302 (2008)

    Article  Google Scholar 

  20. Beigbeder, A, Mincheva, R, Pettitt, ME, Callow, ME, Callow, JA, Claes, M, Dubois, P, “Marine Fouling Release Silicone/Carbon Nanotube Nanocomposite Coatings: On The Importance of the Nanotube Dispersion State.” J. Nanosci. Nanotechnol., 10 (5) 2972–2978 (2010)

    Article  CAS  Google Scholar 

  21. Beigbeder, A, Labruyère, C, Viville, P, Pettitt, ME, Callow, ME, Callow, JA, Bonnaud, L, Lazzaroni, R, Dubois, P, “Surface and Fouling-Release Properties of Silicone/Organomodified Montmorillonite Coatings.” J. Adhesion Sci. Technol., 25 (14) 1689–1700 (2011)

    Article  CAS  Google Scholar 

  22. Tian, S, Jiang, D, Pu, J, Sun, X, Li, Z, Wu, B, Zheng, W, Liu, W, Liu, Z, “A New Hybrid Silicone-Based Antifouling Coating with Nanocomposite Hydrogel for Durable Antifouling Properties.” Chem. Eng. J., 370 1–9 (2019)

    Article  CAS  Google Scholar 

  23. Iguerb, O, Poleunis, C, Mazeas, F, Compere, C, Bertrand, P, “Antifouling Properties of Poly(Methyl Methacrylate) Films Grafted with Poly(ethylene glycol) Monoacrylate Immersed in Seawater.” Langmuir, 24 (21) 12272–12281 (2008)

    Article  CAS  Google Scholar 

  24. Rath, SK, Chavan, JG, Ghorpade, TK, Patro, TU, Patri, M, “Structure–Property Correlations of Foul Release Coatings Based on Low Hard Segment Content Poly (Dimethylsiloxane–Urethane–Urea).” J. Coat. Technol. Res., 15 (1) 185–198 (2018)

    Article  CAS  Google Scholar 

  25. Yi, L, Xu, K, Xia, G, Li, J, Li, W, Cai, Y, “New Protein-Resistant Surfaces of Amphiphilic Graft Copolymers Containing Hydrophilic Poly (Ethylene Glycol) and Low Surface Energy Fluorosiloxane Side-Chains.” Appl. Surface Sci., 480 923–933 (2019)

    Article  CAS  Google Scholar 

  26. Zhang, Z-P, Song, X-F, Cui, L-Y, Qi, Y-H, “Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings.” Coatings, 8 (5) 157–157 (2018)

    Article  CAS  Google Scholar 

  27. Galhenage, TP, Webster, DC, Moreira, AMS, Burgett, RJ, Stafslien, SJ, Vanderwal, L, Finlay, JA, Franco, SC, Clare, AS, “Poly(ethylene) Glycol-Modified, Amphiphilic, Siloxane– Polyurethane Coatings and Their Performance as Fouling-Release Surfaces.” J. Coat. Technol. Res., 14 (2) 307–322 (2017)

    Article  CAS  Google Scholar 

  28. Zhu, X, Guo, S, He, T, Jiang, S, Jańczewski, D, Vancso, GJ, “Engineered, Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein, Cell, and Bacteria Adsorption.” Langmuir, 32 (5) 1338–1346 (2016)

    Article  CAS  Google Scholar 

  29. Martinelli, E, Pretti, C, Oliva, M, Glisenti, A, Galli, G, “Sol–gel Polysiloxane Films Containing Different Surface-Active Trialkoxysilanes for the Release of the Marine Foulant Ficopomatus Enigmaticus.” Polymer, 145 426–433 (2018)

    Article  CAS  Google Scholar 

  30. Gudipati, CS, Finlay, JA, Callow, JA, Callow, ME, Wooley, KL, “The Antifouling and Fouling-Release Perfomance of Hyperbranched Fluoropolymer (HBFP)−Poly(Ethylene Glycol) (PEG) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling Alga Ulva.” Langmuir, 21 (7) 3044–3053 (2005)

    Article  CAS  Google Scholar 

  31. Pollack, KA, Imbesi, PM, Raymond, JE, Wooley, KL, “Hyperbranched Fluoropolymer-Polydimethylsiloxane-Poly(Ethylene Glycol) Cross-linked Terpolymer Networks Designed for Marine and Biomedical Applications: Heterogeneous Nontoxic Antibiofouling Surfaces.” ACS Appl. Mater. Interfaces, 6 (21) 19265–19274 (2014)

    Article  CAS  Google Scholar 

  32. Wang, Y, Betts, DE, Finlay, JA, Brewer, L, Callow, ME, Callow, JA, Wendt, DE, DeSimone, JM, “Photocurable Amphiphilic Perfluoropolyether/Poly (Ethylene Glycol) Networks for Fouling-Release Coatings.” Macromolecules, 44 (4) 878–885 (2011)

    Article  CAS  Google Scholar 

  33. Bodkhe, RB, Stafslien, SJ, Daniels, J, Cilz, N, Muelhberg, AJ, Thompson, SEM, Callow, ME, Callow, JA, Webster, DC, “Zwitterionic Siloxane-Polyurethane Fouling-Release Coatings.” Prog. Org. Coat., 78 369–380 (2015)

    Article  CAS  Google Scholar 

  34. Jiang, S, Cao, Z, “Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications.” Adv. Mater., 22 (9) 920–932 (2010)

    Article  CAS  Google Scholar 

  35. Liu, P, Huang, T, Liu, P, Shi, S, Chen, Q, Li, L, Shen, J, “Zwitterionic Modification of Polyurethane Membranes for Enhancing the Anti-fouling Property.” J. Colloid Interface Sci., 480 91–101 (2016)

    Article  CAS  Google Scholar 

  36. Bodkhe, RB, Stafslien, SJ, Cilz, N, Daniels, J, Thompson, SEM, Callow, ME, Callow, JA, Webster, DC, “Polyurethanes with Amphiphilic Surfaces Made Using Telechelic Functional PDMS Having Orthogonal Acid Functional Groups.” Prog. Org. Coat., 75 (1–2) 38–48 (2012)

    Article  CAS  Google Scholar 

  37. Benda, J, Stafslien, S, Vanderwal, L, Finlay, JA, Clare, AS, Webster, DC, "Surface Modifying Amphiphilic Additives and Their Effect on the Fouling-Release Performance of Siloxane-Polyurethane Coatings." Biofouling, 37 (3) 309–326 (2021)

  38. Van Zoelen, W, Buss, HG, Ellebracht, NC, Lynd, NA, Fischer, DA, Finlay, J, Hill, S, Callow, ME, Callow, JA, Kramer, EJ, “Sequence of Hydrophobic and Hydrophilic Residues in Amphiphilic Polymer Coatings Affects Surface Structure and Marine Antifouling/Fouling Release Properties.” ACS Macro Lett., 3 (4) 364–368 (2014)

    Article  CAS  Google Scholar 

  39. Rahimi, A, Murphy, M, Upadhyay, V, Faiyaz, K, Battocchi, D, Webster, DC, “Amphiphilically Modified Self-stratified Siloxane-Glycidyl Carbamate Coatings for Anti-icing Applications.” J. Coat. Technol. Res., 18 (1) 83–97 (2021)

    Article  CAS  Google Scholar 

  40. Upadhyay, V, Galhenage, T, Battocchi, D, Webster, D, “Amphiphilic Icephobic Coatings.” Prog. Org. Coat., 112 191–199 (2017)

    Article  CAS  Google Scholar 

  41. Dhyani, A, Wang, J, Halvey, AK, Macdonald, B, Mehta, G, Tuteja, A, "Design and Applications of Surfaces that Control the Accretion of Matter." Science, 373 (6552) eaba5010 (2021)

  42. Chattopadhyay, DK, Webster, DC, “Hybrid Coatings from Novel Silane-Modified Glycidyl Carbamate Resins and Amine Crosslinkers.” Prog. Org. Coat., 66 (1) 73–85 (2009)

    Article  CAS  Google Scholar 

  43. Harkal, UD, Muehlberg, AJ, Li, J, Garrett, JT, Webster, DC, “The Influence of Structural Modification and Composition of Glycidyl Carbamate Resins on Their Viscosity and Coating Performance.” J. Coat. Technol. Res., 7 (5) 531–546 (2010)

    Article  CAS  Google Scholar 

  44. Harkal, UD, Muehlberg, AJ, Webster, DC, “Linear Glycidyl Carbamate (GC) Resins for Highly Flexible Coatings.” J. Coat. Technol. Res., 10 (2) 141–151 (2013)

    Article  CAS  Google Scholar 

  45. Edwards, PA, Striemer, G, Webster, DC, “Novel Polyurethane Coating Technology Through Glycidyl Carbamate Chemistry.” JCT Res., 2 (7) 517–527 (2005)

    CAS  Google Scholar 

  46. Chattopadhyay, DK, Zakula, AD, Webster, DC, “Organic–Inorganic Hybrid Coatings Prepared from Glycidyl Carbamate Resin, 3-Aminopropyl Trimethoxy Silane and Tetraethoxyorthosilicate.” Prog. Org. Coat., 64 (2–3) 128–137 (2009)

    Article  CAS  Google Scholar 

  47. Chattopadhyay, DK, Muehlberg, AJ, Webster, DC, “Organic–Inorganic Hybrid Coatings Prepared From Glycidyl Carbamate Resins and Amino-Functional Silanes.” Prog. Org. Coat., 63 (4) 405–415 (2008)

    Article  CAS  Google Scholar 

  48. Edwards, PA, Striemer, G, Webster, DC, “Synthesis, Characterization and Self-Crosslinking of Glycidyl Carbamate Functional Resins.” Prog. Org. Coat., 57 (2) 128–139 (2006)

    Article  CAS  Google Scholar 

  49. Ravindran, N, Chattopadhyay, DK, Zakula, A, Battocchi, D, Webster, DC, Bierwagen, GP, “Thermal Stability of Magnesium-Rich Primers Based on Glycidyl Carbamate Resins.” Polym. Degrad. Stabil., 95 (7) 1160–1166 (2010)

    Article  CAS  Google Scholar 

  50. Webster, DC, "Glycidyl Carbamate Functional Resins and Their Applications: A Review." Polym. Int., 70 (6) 710–719 (2021)

  51. Sonnenschein, MF, Polyurethanes: Science, Technology, Markets, and Trends. Hoboken, NJ (2015)

  52. Fisher, RA, “Design of Experiments.” Br. Med. J., 1 (3923) 554–554 (1936)

    Article  Google Scholar 

  53. Anderson, VL, McLean, RA, Design of Experiments: A Realistic Approach. Routledge (2018)

  54. Owens, DK, Wendt, RC, “Estimation of the Surface Free Energy of Polymers.” J. Appl. Polym. Sci., 13 (8) 1741–1747 (1969)

    Article  CAS  Google Scholar 

  55. Cassé, F, Stafslien, SJ, Bahr, JA, Daniels, J, Finlay, JA, Callow, JA, Callow, ME, "Combinatorial Materials Research Applied to the Development of New Surface Coatings V. Application of a Spinning Water-Jet for the Semi-high Throughput Assessment of the Attachment Strength of Marine Fouling Algae." Biofouling, 23 (2), 121–130 (2007)

  56. Staar, RC, Zeikus, JA, “Utex: The Culture Collection of Algae at the University of Texas at Austin.” J. Phycol, 23 47 (1987)

    Google Scholar 

  57. Stafslien, S, Daniels, J, Mayo, B, Christianson, D, Chisholm, B, Ekin, A, Webster, D, Swain, G, "Combinatorial Materials Research Applied to the Development of New Surface Coatings IV. A High-throughput Bacterial Biofilm Retention and Retraction Assay for Screening Fouling-Release Performance of Coatings." Biofouling, 23 (1) 45–54 (2007)

  58. Stafslien, SJ, Bahr, JA, Daniels, JW, Wal, LV, Nevins, J, Smith, J, Schiele, K, Chisholm, B, “Combinatorial Materials Research Applied to the Development of New Surface Coatings VI: An Automated Spinning Water Jet Apparatus for the High-Throughput Characterization of Fouling-Release Marine Coatings.” Rev. Sci. Instrum., 78 (7) 072204–072204 (2007)

    Article  CAS  Google Scholar 

  59. Callow, ME, Callow, JA, Conlan, S, Clare, AS, Biofouling Methods. Wiley, pp. 291–316 (2014)

  60. Casse, F, Ribeiro, E, Ekin, A, Webster, DC, Callow, JA, Callow, ME, “Laboratory Screening of Coating Libraries for Algal Adhesion.” Biofouling, 23 (4) 267–276 (2007)

    Article  CAS  Google Scholar 

  61. Stafslien, S, Daniels, J, Bahr, J, Chisholm, B, Ekin, A, Webster, D, Orihuela, B, Rittschof, D, “An Improved Laboratory Reattachment Method for the Rapid Assessment of Adult Barnacle Adhesion Strength to Fouling-Release Marine Coatings.” J. Coat. Technol. Res., 9 (6) 651–665 (2012)

    Article  CAS  Google Scholar 

  62. Rittschof, D, Orihuela, B, Stafslien, S, Daniels, J, Christianson, D, Chisholm, B, Holm, E, “Barnacle Reattachment: A Tool for Studying Barnacle Adhesion.” Biofouling, 24 (1) 1–9 (2008)

    Article  CAS  Google Scholar 

  63. Majumdar, P, Crowley, E, Htet, M, Stafslien, SJ, Daniels, J, VanderWal, L, Chisholm, BJ, “Combinatorial Materials Research Applied to the Development of New Surface Coatings XV: An Investigation of Polysiloxane Anti-Fouling/Fouling-Release Coatings Containing Tethered Quaternary Ammonium Salt Groups.” ACS Comb. Sci., 13 (3) 298–309 (2011)

    Article  CAS  Google Scholar 

  64. Finlay, JA, Callow, ME, Ista, LK, Lopez, GP, Callow, JA, “The Influence of Surface Wettability on the Adhesion Strength of Settled Spores of the Green Alga Enteromorpha and the Diatom Amphora.” Integr. Compar. Biol., 42 (6) 1116–1122 (2002)

    Article  Google Scholar 

  65. Callow, ME, Callow, JA, Ista, LK, Coleman, SE, Nolasco, AC, López, GP, “Use of Self-assembled Monolayers of Different Wettabilities to Study Surface Selection and Primary Adhesion Processes of Green Algal (Enteromorpha) Zoospores.” Appl. Environ. Microbiol., 66 (8) 3249–3254 (2000)

    Article  CAS  Google Scholar 

  66. Callow, JA, Callow, ME, Ista, LK, Lopez, G, Chaudhury, MK, “The Influence of Surface Energy on the Wetting Behaviour of the Spore Adhesive of the Marine Alga Ulva linza (Synonym Enteromorpha linza).” J. Royal Soc. Interface, 2 (4) 319–325 (2005)

    Article  CAS  Google Scholar 

  67. Aldred, N, Li, G, Gao, Y, Clare, AS, Jiang, S, “Modulation of Barnacle (Balanus amphitrite Darwin) Cyprid Settlement Behavior by Sulfobetaine and Carboxybetaine Methacrylate Polymer Coatings.” Biofouling, 26 (6) 673–683 (2010)

    Article  CAS  Google Scholar 

  68. Tan, BH, Hussain, H, Chaw, KC, Dickinson, GH, Gudipati, CS, Birch, WR, Teo, SLM, He, C, Liu, Y, Davis, TP, “Barnacle Repellent Nanostructured Surfaces Formed by the Self-assembly of Amphiphilic Block Copolymers.” Polym. Chem., 1 (3) 276–279 (2010)

    Article  CAS  Google Scholar 

  69. Huggett, MJ, Nedved, BT, Hadfield, MG, “Effects of Initial Surface Wettability on Biofilm Formation and Subsequent Settlement of Hydroides Elegans.” Biofouling, 25 (5) 387–399 (2009)

    Article  CAS  Google Scholar 

  70. Rittschof, D, Costlow, JD, “Bryozoan and Barnacle Settlement in Relation to Initial Surface Wettability: A Comparison of Laboratory and Field Studies.” Scientia Marina, 53 (2) 411–416 (1989)

    Google Scholar 

  71. Di Fino, A, Petrone, L, Aldred, N, Ederth, T, Liedberg, B, Clare, AS, “Correlation Between Surface Chemistry and Settlement Behaviour in Barnacle Cyprids (Balanus improvisus).” Biofouling, 30 (2) 143–152 (2014)

    Article  Google Scholar 

  72. Petrone, L, Di Fino, A, Aldred, N, Sukkaew, P, Ederth, T, Clare, AS, Liedberg, B, “Effects of Surface Charge and Gibbs Surface Energy on the Settlement Behaviour of Barnacle Cyprids (Balanus amphitrite).” Biofouling, 27 (9) 1043–1055 (2011)

    Article  Google Scholar 

  73. Aldred, N, Gatley-Montross, CM, Lang, M, Detty, MR, Clare, AS, “Correlative Assays of Barnacle Cyprid Behaviour for the Laboratory Evaluation of Antifouling Coatings: A Study of Surface Energy Components.” Biofouling, 35 (2) 159–172 (2019)

    Article  CAS  Google Scholar 

  74. Gatley-Montross, CM, Finlay, JA, Aldred, N, Cassady, H, Destino, JF, Orihuela, B, Hickner, MA, Clare, AS, Rittschof, D, Holm, ER, "Multivariate Analysis of Attachment of Biofouling Organisms in Response to Material Surface Characteristics." Biointerphases, 12 (5) 051003 (2017)

  75. Galhenage, TP, Hoffman, D, Silbert, SD, Stafslien, SJ, Daniels, J, Miljkovic, T, Finlay, JA, Franco, SC, Clare, AS, Nedved, BT, “Fouling-Release Performance of Silicone Oil-Modified Siloxane-Polyurethane Coatings.” ACS Appl. Mater. Interfaces, 8 (42) 29025–29036 (2016)

    Article  CAS  Google Scholar 

  76. Rasulev, B, Jabeen, F, Stafslien, S, Chisholm, BJ, Bahr, J, Ossowski, M, Boudjouk, P, “Polymer Coating Materials and Their Fouling Release Activity: A Cheminformatics Approach to Predict Properties.” ACS Appl. Mater. Interfaces, 9 (2) 1781–1792 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Navy’s Office of Naval Research under grant numbers N00014-16-1-3064 and N00014-16-1-2988 (ASC and JAF). The authors would also like to thank James Bahr and Kinza Faiyaz for their help with XPS and statistical analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean C. Webster.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A., Murphy, M., Faiyaz, K. et al. Amphiphilic marine coating systems of self-stratified PDMS-PEG surfaces with an epoxy-polyurethane matrix. J Coat Technol Res 19, 795–812 (2022). https://doi.org/10.1007/s11998-021-00561-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00561-2

Keywords

Navigation