Skip to main content

New biodegradable film produced from cocoa shell nanofibrils containing bioactive compounds

Abstract

Cellulosic nanofibrils from cocoa shells were used in this study to produce biodegradable films from a residue naturally rich in bioactive compounds, while reserving these compounds. The nanofibrils were obtained by mechanical defibrillation without chemical or enzymatic pretreatment. The nanofibril gel was evaluated in biodegradable films, for the first time, with the addition of glycerol as a plasticizer in the proportions of 0, 1, 3, 5, and 7% (w/w). The morphological characteristics, thermal analysis, mechanical properties (rupture tensile, maximum rupture elongation, and Young’s modulus), water vapor permeability, and water solubility of the films were investigated. In addition, the residue was analyzed and compared to the films by the FTIR technique to prove the maintenance of functional groups characteristic of antioxidant activity. The use of 3% and 5% glycerol as a plasticizer showed the best mechanical characteristics—reduced water vapor permeation and increased degradation in water. The pure nanofibril film demonstrated greater thermal stability. It was possible to identify the maintenance of aromatic groups and phenols in the residue from all cocoa shell nanofibril films. This study contributes to the future application of cocoa shell nanofibers in the production of edible films, coatings, and packaging materials. It recommends their application in cocoa and chocolate products due to the compatibility of smell and color.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Phanthong, P, Reubroycharoen, P, Hao, X, Xu, G, Abudula, A, Guan, G, “Nanocellulose: Extraction and application.” Carbon Resour. Convers., 1 (1) 32–43. https://doi.org/10.1016/j.crcon.2018.05.004 (2018)

    Article  Google Scholar 

  2. Pfaltzgraff, LA, Debruyn, M, Cooper, EC, Budarin, V, Clark, JH, “Food waste biomass: A resource for high-value chemicals.” Green Chem., 15 (2) 307–314. https://doi.org/10.1039/C2GC36978H (2013)

    CAS  Article  Google Scholar 

  3. Cherubini, F, “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals.” Energy Convers. Manag., 51 (7) 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015 (2010)

    CAS  Article  Google Scholar 

  4. Tharanathan, RN, “Biodegradable films and composite coatings: Past, present and future.” Trends Food Sci. Technol., 14 (3) 71–78. https://doi.org/10.1016/S0924-2244(02)00280-7 (2003)

    CAS  Article  Google Scholar 

  5. Portes, E, Gardrat, C, Castellan, A, Coma, V, “Enviromentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties.” Carbohydr. Polym., 76 (4) 578–584. https://doi.org/10.1016/j.carbpol.2008.11.031 (2009)

    CAS  Article  Google Scholar 

  6. Siró, I, Plackett, D, “Microfibrillated cellulose and new nanocomposite materials: A review.” Cellulose, 17 459–494. https://doi.org/10.1007/s10570-010-9405-y (2010)

    CAS  Article  Google Scholar 

  7. Mishra, RK, Sabu, A, Tiwari, SK, “Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect.” J. Saudi Chem. Soc., 22 (8) 949–978. https://doi.org/10.1016/j.jscs.2018.02.005 (2018)

    CAS  Article  Google Scholar 

  8. Abitbol, T, Rivkin, A, Cao, Y, Nevo, Y, Abraham, E, Ben-Shalom, T, Lapidot, S, Shoseyov, O, “Nanocellulose, a tiny fiber with huge applications.” Shoseyov Curr. Opin. Biotechnol., 39 76–88. https://doi.org/10.1016/j.copbio.2016.01.002 (2016)

    CAS  Article  Google Scholar 

  9. Bagde, P, Nadanathangam, V, “Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose.” Carbohydr. Polym., 222 115021. https://doi.org/10.1016/j.carbpol.2019.115021 (2019)

    CAS  Article  Google Scholar 

  10. Guimarães, IC, Reis, KC, Menezes, EGT, Rodrigues, AC, Silva, TF, Oliveira, IRN, Vilas Boas, EVB, “Cellulose microfibrillated suspension of carrots obtained by mechanical defibrillation and their application in edible starch films.” Ind. Crops Prod., 70 (89) 285–294. https://doi.org/10.1016/j.indcrop.2015.03.014 (2015)

    CAS  Article  Google Scholar 

  11. Tao, P, Zhang, Y, Wu, Z, Liao, X, Nie, S, “Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure.” Carbohydr. Polym., 214 1–7. https://doi.org/10.1016/j.carbpol.2019.03.012 (2019)

    CAS  Article  Google Scholar 

  12. Wang, Y, Zhang, L, Liu, W, Cui, C, Hou, Q, “Fabrication of optically transparent and strong nanopaper from cellulose nanofibril based on corncob residues.” Carbohydr. Polym., 214 159–166. https://doi.org/10.1016/j.carbpol.2019.03.035 (2019)

    CAS  Article  Google Scholar 

  13. Haslam, E, Practical Polyphenolics: From structure to molecular recognition and physiological action. Cambridge University Press, New York (2005)

    Google Scholar 

  14. Rahimi, M, Behrooz, R, “Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw.” Int. J. Polym. Mate, 60 (8) 529–541. https://doi.org/10.1080/00914037.2010.531820 (2011)

    CAS  Article  Google Scholar 

  15. Santos, RMD, Flauzino, NWP, Silvério, HA, Martins, DF, Dantas, NO, Pasquini, D, “Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste.” Ind. Crops Prod., 50 707–714. https://doi.org/10.1016/j.indcrop.2013.08.049 (2013)

    CAS  Article  Google Scholar 

  16. Lessa, OA, Reis, NS, Leite, SGF, Gutarra, MLE, Souza, AO, Gualberto, SA, Oliveira, JR, Aguiar-Oliveira, E, Franco, M, “Effect of the solid-state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids.” Food Sci. Biotechnol., 27 107–113. https://doi.org/10.1007/s10068-017-0196-x (2018)

    CAS  Article  Google Scholar 

  17. Okiyama, DCG, Navarro, SLB, Rodrigues, CEC, “Cocoa shell and its compounds: Applications in the food industry.” Trends Food Sci. Technol., 63 103–112. https://doi.org/10.1016/j.tifs.2017.03.007 (2017)

    CAS  Article  Google Scholar 

  18. Bruna, C, Eichholz, I, Rohn, S, Kroh, LW, Huyskens-Keil, S, “Bioactive compounds and antioxidant activity of cocoa hulls (Theobroma cacao L.) from different origins.” J. Appl. Bot. Food Qual., 83 (1) 9–13 (2009)

    CAS  Google Scholar 

  19. Hoyos, CG, Márquez, PM, Vélez, LP, Guerra, AS, Eceiza, A, Urbina, L, Velásquez-Cock, J, Rojo, PG, Acosta, LV, Zuluaga, R, “Cocoa shell: An industrial by-product for the preparation of suspensions of holocellulose nanofibers and fat.” Cellulose, 27 10873–10884. https://doi.org/10.1007/s10570-020-03222-6 (2020)

    CAS  Article  Google Scholar 

  20. Souza, LO, Lessa, OA, Dias, MC, Tonoli, GHD, Rezende, DVB, Martins, MA, Neves, ICO, Resende, JV, Carvalho, EEN, Vilas Boas, EVB, Oliveira, JR, Franco, M, “Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.).” Carbohydr. Polym., 214 152–158. https://doi.org/10.1016/j.carbpol.2019.03.037 (2019)

    CAS  Article  Google Scholar 

  21. Souza, VGL, Fernando, AL, Pires, JRA, Rodrigues, PF, Lopes, AAS, Fernandes, FMB, “Physical properties of chitosan films incorporated with natural antioxidants.” Ind. Crops Prod., 107 565–572. https://doi.org/10.1016/j.indcrop.2017.04.056 (2017)

    CAS  Article  Google Scholar 

  22. Barbosa-Pereiram, L, Ângulo, I, Lagarón, JM, Paseiro-Losada, P, Cruz, JM, “Development of new active packaging films containing bioactive nanocomposites.” Innov. Food Sci. Emerg. Technol., 26 310–318. https://doi.org/10.1016/j.ifset.2014.06.002 (2014)

    CAS  Article  Google Scholar 

  23. Miranda, MC, Castelo, PAR, “Avaliações Anatômicas das Fibras da Madeira de Parkia gigantocarpa Ducke.” Braz. J. Wood Sci., 3 (2) 01–09. https://doi.org/10.15210/cmad.v3i2.4039 (2012)

    Article  Google Scholar 

  24. French, AD, “Idealized powder diffraction patterns for cellulose polymorphs.” Cellulose, 21 885–896. https://doi.org/10.1007/s10570-013-0030-4 (2014)

    CAS  Article  Google Scholar 

  25. ASTM-American Society for Testing and Materials, Standard test methods for tensile properties of thin plastic sheeting. ASTM d882-00, Philadelphia, 2000.

  26. ASTM-American Society for Testing and Materials, Standard test methods for water vapor transmission of materials. ASTM e96-00, Philadelphia, 2000.

  27. Bourtoom, T, Chinnan, MS, “Preparation and properties of rice starch–chitosan blend biodegradable film.” LWT-Food Sci. Technol., 41 (9) 1633–1641. https://doi.org/10.1016/j.lwt.2007.10.014 (2008)

    CAS  Article  Google Scholar 

  28. Tetens, VO, Uber einige meteorologische, vol 6. Zeitschrift Geophysic, Wurzburg (1930)

    Google Scholar 

  29. Gontard, N, Duchez, C, Jean-Louis, C, Guilbert, S, “Edible composite films of wheat gluten and lipids: Water vapor permeability and other physical properties.” Int. J. Food Sci. Techonol., 29 (1) 39–50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x (1994)

    CAS  Article  Google Scholar 

  30. Chacón, ES, Rodríguez, OA, Arrieta, AR, Alpízar, LG, “Micromorfología de los foliolos de pejibaye Bactris gasipaes (Arecaceae) var. Diamantes-10.” Rev. Biol. Trop., 64 (3) 1273–1285. https://doi.org/10.15517/rbt.v64i3.19718 (2016)

    Article  Google Scholar 

  31. Ifuku, S, Ikuta, A, HironoriIzawa, H, Morimoto, M, Saimoto, H, “Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics.” Carbohydr. Polym., 101 714–717. https://doi.org/10.1016/j.carbpol.2013.09.076 (2014)

    CAS  Article  Google Scholar 

  32. Kiziltas, EE, Kiziltas, A, Nazari, B, Gardner, DJ, Bousfield, DW, “Glycerine treated nanofibrillated cellulose composites.” J. Nanomater., 2016 7851308. https://doi.org/10.1155/2016/7851308 (2016)

    CAS  Article  Google Scholar 

  33. Batista, NN, Andrade, DP, Ramos, CL, Dias, DR, Schwan, RF, “Antioxidant capacity of cocoa beans and chocolate assessed by FTIR.” Food Res. Int., 90 313–319. https://doi.org/10.1016/j.foodres.2016.10.028 (2016)

    CAS  Article  Google Scholar 

  34. Rosa, MF, Medeiros, ES, Malmonge, JA, Gregorski, KS, Wood, DF, Mattoso, LHC, Glenn, G, Orts, WJ, Imam, SH, “Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behaviour.” Carbohydr. Polym., 81 (1) 83–92. https://doi.org/10.1016/j.carbpol.2010.01.059 (2010)

    CAS  Article  Google Scholar 

  35. Alemdar, A, Sain, M, “Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties.” Compos. Sci. Technol., 68 (2) 557–565. https://doi.org/10.1016/j.compscitech.2007.05.044 (2008)

    CAS  Article  Google Scholar 

  36. Hoeger, IC, Nair, SS, Ragauskas, AJ, Deng, Y, Rojas, OJ, Zhu, JY, “Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification.” Cellulose, 20 807–818. https://doi.org/10.1007/s10570-013-9867-9 (2013)

    CAS  Article  Google Scholar 

  37. Chandra, JCS, George, N, Narayanankutty, SK, “Isolation and characterization of cellulose nanofibrils from areca nut husk fibre.” Carbohydr. Polym., 142 158–166. https://doi.org/10.1016/j.carbpol.2016.01.015 (2016)

    CAS  Article  Google Scholar 

  38. Rosa, SML, Rehman, N, Miranda, MIG, Nachtigal, SMB, Bica, CID, “Chlorine-free extraction of cellulose from rice husk and whisker isolation.” Carbohydr. Polym., 8 (2) 1131–1138. https://doi.org/10.1016/j.carbpol.2011.08.084 (2012)

    CAS  Article  Google Scholar 

  39. Costa, LAS, Assis, DJ, Gomes, GVP, Da Silva, JBA, Fonsêca, AF, Druzian, JI, “Extraction and characterization of nanocellulose from corn stover.” Mater. Today, 2 (1) 287–294. https://doi.org/10.1016/j.matpr.2015.04.045 (2015)

    Article  Google Scholar 

  40. Yang, X, Han, F, Xu, C, Jiang, S, Huang, L, Liu, L, Xia, Z, “Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk.” Ind. Crops Prod., 109 241–247. https://doi.org/10.1016/j.indcrop.2017.08.032 (2017)

    CAS  Article  Google Scholar 

  41. Li, M, Tian, X, Ruifa, J, Li, D, “Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers.” Ind. Crops Prod., 123 654–660. https://doi.org/10.1016/j.indcrop.2018.07.043 (2018)

    CAS  Article  Google Scholar 

  42. Flauzino Neto, WP, Silvério, HA, Dantas, NO, Pasquini, D, “Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls.” Ind. Crops Prod., 42 480–488. https://doi.org/10.1016/j.indcrop.2012.06.041 (2013)

    CAS  Article  Google Scholar 

  43. Lee, SY, Mohan, DJ, Kang, IA, Doh, GH, Lee, S, Han, SO, “Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading.” Fiber and Polym., 10 77–82. https://doi.org/10.1007/s12221-009-0077-x (2009)

    CAS  Article  Google Scholar 

  44. Franco, TS, Potulski, DC, Viana, LC, Forville, E, de Andrade, AS, de Muniz, GIB, “Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes).” Carbohydr. Polym., 218 8–19. https://doi.org/10.1016/j.carbpol.2019.04.035 (2019)

    CAS  Article  Google Scholar 

  45. Xu, C, Zhu, S, Xing, C, Li, D, Zhu, N, Zhou, H, “Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.” PloS One, 10 (4) e0122123. https://doi.org/10.1371/journal.pone.0122123 (2015)

    CAS  Article  Google Scholar 

  46. Alemdar, A, Sain, M, “Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls.” Bioresour. Technol., 99 (6) 1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029 (2008)

    CAS  Article  Google Scholar 

  47. Guimarães, M, Botaro, VR, Novack, KM, Teixeira, FG, Tonoli, GHD, “Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils.” Ind. Crops Prod., 70 72–83. https://doi.org/10.1016/j.indcrop.2016.05.024 (2015)

    CAS  Article  Google Scholar 

  48. Lago, RC, Oliveira, ALM, Dias, MC, Carvalho, EEN, Tonoli, GHD, Vilas-Boas, EVB, “Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: Mechanical and barrier properties.” Ind. Crops Prod., 148 112264. https://doi.org/10.1016/j.indcrop.2020.112264 (2020)

    CAS  Article  Google Scholar 

  49. Machado, BAS, Reis, JHO, Cruz, LS, Leal, IL, Barbosa, JDV, Azevedo, JB, Druzian, JI, “Characterization of cassava starch films plasticized with glycerol and strengthened with nanocellulose from green coconut fibers.” Afr. J. Biotechnol., 16 (28) 1567–1578. https://doi.org/10.5897/AJB2017.1594 (2017)

    CAS  Article  Google Scholar 

  50. Boonsuk, P, Sukolrat, A, Kaewtatip, K, Chantarak, S, Kelarakis, A, Chaibundit, C, “Modified cassava starch/poly (vinyl alcohol) blend films plasticized by glycerol: Structure and properties.” J. Appl. Polym. Sci., 137 (48848) 1–13. https://doi.org/10.1002/APP.48848 (2020)

    Article  Google Scholar 

  51. Munthoub, DI, Rahman, WA, “Tensile and water absorption properties of biodegradable composites derived from cassava skin/polyvinyl alcohol with glycerol as plasticizer.” Sains Malays., 40 (7) 713–718 (2011)

    CAS  Google Scholar 

  52. Faradilla, RHF, Lee, G, Roberts, J, Martens, P, Stenzel, M, Arcot, J, “Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem.” Cellulose, 25 399–416. https://doi.org/10.1007/s10570-017-1537-x (2018)

    CAS  Article  Google Scholar 

  53. Dufresne, A, “Nanocellulose: A new ageless bionanomaterial.” Mater. Today, 16 (6) 220–227. https://doi.org/10.1016/j.mattod.2013.06.004 (2013)

    CAS  Article  Google Scholar 

  54. Azeredo, HMC, Mattoso, LHC, Wood, D, Williams, TG, Avena-Bustillos, RJ, Mchugh, TH, “Nanocomposite edible films from mango puree reinforced with cellulose nanofibers.” J. Food. Sci., 74 (5) 31–35. https://doi.org/10.1111/j.1750-3841.2009.01186.x (2009)

    CAS  Article  Google Scholar 

  55. Miao, X, Lin, J, Tian, F, Li, X, Bian, F, Wang, J, “Cellulose nanofibrils extracted from the byproduct of cotton plant.” Carbohydr. Polym., 136 841–850. https://doi.org/10.1016/j.carbpol.2015.09.056 (2016)

    CAS  Article  Google Scholar 

  56. Kaushik, A, Singh, M, Verma, G, “Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw.” Carbohydr. Polym., 82 (2) 337–345. https://doi.org/10.1016/j.carbpol.2010.04.063 (2010)

    CAS  Article  Google Scholar 

  57. Singh, B, Sharma, N, “Mechanistic implications of plastic degradation.” Polym. Degrad. Stabil., 93 (3) 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008 (2008)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Banco do Nordeste do Brasil (BNB, Brazil), the Coordination for the Improvement of Higher Education Personne (CAPES, Procad 88881.068456/2014-01), the National Council for Scientific and Technological Development (Productivity in Research Grants 302259/2018-0, 302699/2019-8, CNPq, Brazil), the Research Support Foundation of the State of Minas Gerais (PPM-00458-15, FAPEMIG, Brazil), and the Research Support Foundation of the State of Bahia (FAPESB, Brazil) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Franco.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lessa, O.A., de Carvalho Tavares, I.M., Souza, L.O. et al. New biodegradable film produced from cocoa shell nanofibrils containing bioactive compounds. J Coat Technol Res 18, 1613–1624 (2021). https://doi.org/10.1007/s11998-021-00519-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00519-4

Keywords

  • Biodegradable polymers
  • Theobroma cacao L.
  • Green production
  • Antioxidants
  • Nanocellulose
  • Microfibers