Skip to main content

Advertisement

Log in

Synthesis and properties of phosphorus-containing cardanol-based acrylates for flame-retardant UV/EB-cured coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this article, two kinds of phosphorus-containing cardanol-based acrylates were designed and synthesized. Firstly, a pre-polymer (PT-HCE) with three arms was synthesized using hydroxyethyl cardanol ether (HCE) and phosphorus oxychloride (POCl3) as raw materials. Then, the PT-HCE was acrylated to synthesize phosphate tris-hydroxyethyl cardanol epoxy acrylate resin (AEPT-HCE) and phosphate tris-hydroxyethyl cardanol photosensitive resin (APT-HCE). The structures of PT-HCE, AEPT-HCE and APT-HCE were characterized and the results showed that the photosensitive resins were successfully synthesized. In addition, AEPT-HCE and APT-HCE were used to prepare the flame-retardant UV/EB curing coatings. The properties of the coatings were tested, and the results revealed that different structures have a certain effect on Tg and tensile properties of the coatings. The cured films demonstrated excellent flame-retardant properties, showing flammability rating of V-0 in UL-94 test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bellido-Aguilar, DA, Zheng, S, Huang, Y, Zeng, X, Zhang, Q, Chen, Z, ““Solvent-Free Synthesis and Hydrophobization of Biobased Epoxy Coatings for Anti-Icing and Anticorrosion Applications’’.” ACS Sustain. Chem. Eng., 7 (23) 19131–19141. (2019)

    Article  CAS  Google Scholar 

  2. Zheng, S, Bellido-Aguilar, DA, Huang, Y, Zeng, X, Zhang, Q, Chen, Z, “Mechanically Robust Hydrophobic Bio-based Epoxy Coatings for Anti-corrosion Application.” Surf. Coat. Technol., 363 43–50. (2019)

    Article  CAS  Google Scholar 

  3. Zheng, S, Bellido-Aguilar, DA, Hu, J, Huang, Y, Zhao, X, Wang, Z, Zeng, X, Zhang, Q, Chen, Z, “Waterborne Bio-Based Epoxy Coatings for the Corrosion Protection of Metallic Substrates.” Prog. Org. Coat., 136 105265. (2019)

    Article  CAS  Google Scholar 

  4. Sharmin, E, Zafar, F, Akram, D, Alam, M, Ahmad, S, “Recent Advances in Vegetable Oils Based Environment Friendly Coatings: A Review.” Ind. Crops Prod., 76 215–229. (2015)

    Article  CAS  Google Scholar 

  5. Phalak, G, Patil, D, Patil, A, Mhaske, S, “Synthesis of Acrylated Cardanol Diphenyl Phosphate for UV Curable Flame-Retardant Coating Application.” Eur. Polym. J., 121 109320. (2019)

    Article  CAS  Google Scholar 

  6. Liu, K, Madbouly, SA, Kessler, MR, “Biorenewable Thermosetting Copolymer based on Soybean Oil and Eugenol.” Eur. Polym. J., 69 16–28. (2015)

    Article  CAS  Google Scholar 

  7. Torron, S, Hult, D, Pettersson, T, Johansson, M, “Tailoring Soft Polymer Networks Based on Sugars and Fatty Acids Toward Pressure Sensitive Adhesive Applications.” ACS Sustain. Chem. Eng., 5 (3) 2632–2638. (2017)

    Article  CAS  Google Scholar 

  8. Demchuk, Z, Li, WSJ, Eshete, H, Caillol, S, Voronov, A, “Synergistic Effects of Cardanol- and High Oleic Soybean Oil Vinyl Monomers in Miniemulsion Polymers.” ACS Sustain. Chem. Engi., 7 (10) 9613–9621. (2019)

    Article  CAS  Google Scholar 

  9. Kuang, X, Guo, E, Chen, K, Qi, HJ, “Extraction of Biolubricant via Chemical Recycling of Thermosetting Polymers.” ACS Sustain. Chem. Eng., 7 (7) 6880–6888. (2019)

    Article  CAS  Google Scholar 

  10. Nameer, S, Deltin, T, Sundell, P-E, Johansson, M, “Bio-based Multifunctional Fatty Acid Methyl Esters as Reactive Diluents in Coil Coatings.” Prog. Org. Coat., 136 105277. (2019)

    Article  CAS  Google Scholar 

  11. Xia, Y, Larock, RC, “Vegetable Oil-based Polymeric Materials: Synthesis, Properties, and Applications.” Green Chem., 12 (11) 1893. (2010)

    Article  CAS  Google Scholar 

  12. Trentin, DS, Silva, DB, Frasson, AP, Rzhepishevska, O, da Silva, MV, Pulcini Ede, L, James, G, Soares, GV, Tasca, T, Ramstedt, M, Giordani, RB, Lopes, NP, Macedo, AJ, “Natural Green Coating Inhibits Adhesion of Clinically Important Bacteria.” Sci. Rep., 5 8287. (2015)

    Article  CAS  Google Scholar 

  13. Zhang, C, Li, Y, Chen, R, Kessler, MR, “Polyurethanes from Solvent-Free Vegetable Oil-Based Polyols.” ACS Sustain. Chem. Eng., 2 (10) 2465–2476. (2014)

    Article  CAS  Google Scholar 

  14. Vilela, C, Sousa, AF, Fonseca, AC, Serra, AC, Coelho, JFJ, Freire, CSR, Silvestre, AJD, “The Quest for Sustainable Polyesters – Insights into the Future.” Polym. Chem., 5 (9) 3119–3141. (2014)

    Article  CAS  Google Scholar 

  15. Beerthuis, R, Rothenberg, G, Shiju, NR, “Catalytic Routes Towards Acrylic Acid, Adipic Acid and ε-Caprolactam Starting from Biorenewables.” Green Chem., 17 (3) 1341–1361. (2015)

    Article  CAS  Google Scholar 

  16. Hojabri, L, Kong, X, Narine, SS, “Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization.” Biomacromolecules, 10 (4) 884–891. (2009)

    Article  CAS  Google Scholar 

  17. Hu, Y, Shang, Q, Bo, C, Jia, P, Feng, G, Zhang, F, Liu, C, Zhou, Y, “Synthesis and Properties of UV-Curable Polyfunctional Polyurethane Acrylate Resins from Cardanol.” ACS Omega, 4 (7) 12505–12511. (2019)

    Article  CAS  Google Scholar 

  18. Balaji, A, Karthikeyan, B, Swaminathan, J, Sundar Raj, C, “Effect of Filler Content of Chemically Treated Short Bagasse Fiber-Reinforced Cardanol Polymer Composites.” J. Nat. Fibers, 16 (4) 613–627. (2018)

    Article  CAS  Google Scholar 

  19. Ezzat, AO, Atta, AM, Al-Lohedan, HA, Abdullah, MMS, Hashem, AI, “Synthesis and Application of Poly(ionic liquid) Based on Cardanol as Demulsifier for Heavy Crude Oil Water Emulsions.” Energy Fuels, 32 (1) 214–225. (2017)

    Article  CAS  Google Scholar 

  20. Shibata, M, Itakura, Y, Watanabe, H, “Bio-based Thermosetting Resins Composed of Cardanol Novolac and Bismaleimide.” Polym. J., 45 (7) 758–765. (2012)

    Article  CAS  Google Scholar 

  21. Voirin, C, Caillol, S, Sadavarte, NV, Tawade, BV, Boutevin, B, Wadgaonkar, PP, “Functionalization of Cardanol: Towards Biobased Polymers and Additives.” Polym. Chem., 5 (9) 3142–3162. (2014)

    Article  CAS  Google Scholar 

  22. Mishra, V, Desai, J, Patel, KI, “(UV/Oxidative) Dual Curing Polyurethane Dispersion from Cardanol based Polyol: Synthesis and Characterization.” Ind. Crops Prod., 111 165–178. (2018)

    Article  CAS  Google Scholar 

  23. Jaillet, F, Darroman, E, Ratsimihety, A, Auvergne, R, Boutevin, B, Caillol, S, “New Biobased Epoxy Materials from Cardanol.” Eur. J. Lipid Sci. Technol., 116 (1) 63–73. (2014)

    Article  CAS  Google Scholar 

  24. Balachandran, VS, Jadhav, SR, Vemula, PK, John, G, “Recent Advances in Cardanol Chemistry in a Nutshell: From a Nut to Nanomaterials.” Chem. Soc. Rev., 42 (2) 427–38. (2013)

    Article  CAS  Google Scholar 

  25. Mgaya, J, Shombe, GB, Masikane, SC, Mlowe, S, Mubofu, EB, Revaprasadu, N, “Cashew Nut Shell: a Potential Bio-resource for the Production of Bio-sourced Chemicals, Materials and Fuels.” Green Chem., 21 (6) 1186–1201. (2019)

    Article  CAS  Google Scholar 

  26. Mohapatra, S, Nando, GB, “Cardanol: a Green Substitute for Aromatic Oil as a Plasticizer in Natural Rubber.” RSC Adv., 4 (30) 15406–15418. (2014)

    Article  CAS  Google Scholar 

  27. Ma, Z, Liao, B, Wang, K, Dai, Y, Huang, J, Pang, H, “Synthesis, Curing Kinetics, Mechanical and Thermal Properties of Novel Cardanol-based Curing Agents with Thiourea.” RSC Adv., 6 (107) 105744–105754. (2016)

    Article  CAS  Google Scholar 

  28. Li, J-J, Sun, J, Xie, Y-X, Zhao, C, Ma, H-X, Liu, C-M, “A Novel Star-shaped, Cardanol-based Bio-prepolymer: Synthesis, UV Curing Characteristics and Properties of Cured Films.” Polym. Degrad. Stab., 158 124–135. (2018)

    Article  CAS  Google Scholar 

  29. Wang, X, Zhou, S, Guo, W-W, Wang, P-L, Xing, W, Song, L, Hu, Y, “Renewable Cardanol-Based Phosphate as a Flame Retardant Toughening Agent for Epoxy Resins.” ACS Sustain. Chem. Eng., 5 (4) 3409–3416. (2017)

    Article  CAS  Google Scholar 

  30. Wang, X, Kalali, EN, Wang, D-Y, “Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin.” ACS Sustain. Chem. Eng., 3 (12) 3281–3290. (2015)

    Article  CAS  Google Scholar 

  31. Mestry, S, Kakatkar, R, Mhaske, ST, “Cardanol Derived P and Si Based Precursors to Develop Flame Retardant PU Coating.” Prog. Org. Coat., 129 59–68. (2019)

    Article  CAS  Google Scholar 

  32. Li, S, Yang, X, Huang, K, Li, M, Xia, J, “Design, Preparation and Properties of Novel Renewable UV-Curable Copolymers based on Cardanol and Dimer Fatty Acids.” Prog. Org. Coat., 77 (2) 388–394. (2014)

    Article  CAS  Google Scholar 

  33. Liu, R, Luo, J, Ariyasivam, S, Liu, X, Chen, Z, “High Biocontent Natural Plant Oil based UV-Curable Branched Oligomers.” Prog. Org. Coat., 105 143–148. (2017)

    Article  CAS  Google Scholar 

  34. Liu, R, Zhang, X, Zhu, J, Liu, X, Wang, Z, Yan, J, “UV-Curable Coatings from Multiarmed Cardanol-Based Acrylate Oligomers.” ACS Sustain. Chem. Eng., 3 (7) 1313–1320. (2015)

    Article  CAS  Google Scholar 

  35. Liu, R, Zhu, G, Li, Z, Liu, X, Chen, Z, Ariyasivam, S, “Cardanol-based Oligomers with ‘Hard Core, Flexible Shell’ Structures: From Synthesis to UV Curing Applications.” Green Chem., 17 (6) 3319–3325. (2015)

    Article  CAS  Google Scholar 

  36. Liu, P, Zhang, X, Liu, R, Liu, X, Liu, J, “Highly Functional Bio-based Acrylates with a Hard Core and Soft Arms: From Synthesis to Enhancement of an Acrylated Epoxidized Soybean Oil-based UV-Curable Coating.” Prog. Org. Coat., 134 342–348. (2019)

    Article  CAS  Google Scholar 

  37. Dai, J, Ma, S, Wu, Y, Han, L, Zhang, L, Zhu, J, Liu, X, “Polyesters derived from Itaconic Acid for the Properties and Bio-based Content Enhancement of Soybean Oil-based Thermosets.” Green Chem., 17 (4) 2383–2392. (2015)

    Article  CAS  Google Scholar 

  38. Walther, S, Strehmel, B, Strehmel, V, “Functionalization of An Alkyd Resin with (Meth)acrylate Groups for Photoinitiated Polymerization.” Prog. Org. Coat., 125 316–324. (2018)

    Article  CAS  Google Scholar 

  39. Thiher, NLK, Schissel, SM, Jessop, JLP, “Quantifying UV/EB Dual Cure for Successful Mitigation of Oxygen Inhibition and Light Attenuation.” Prog. Org. Coat., 138 105378. (2020)

    Article  CAS  Google Scholar 

  40. Schissel, SM, Jessop, JLP, “Quantitative Comparison of Photo- and Electron-beam Polymerizations based on Equivalent Initiation Energy.” Radiat. Phys. Chem., 157 72–83. (2019)

    Article  CAS  Google Scholar 

  41. Furtak-Wrona, K, Kozik-Ostrówka, P, Jadwiszczak, K, Maigret, JE, Aguié-Béghin, V, Coqueret, X, “Polyurethane Acrylate Networks Including Cellulose Nanocrystals: a Comparison between UV and EB- Curing.” Radiat. Phys. Chem., 142 94–99. (2018)

    Article  CAS  Google Scholar 

  42. Zhang, J, Mi, X, Chen, S, Xu, Z, Zhang, D, Miao, M, Wang, J, “A Bio-based Hyperbranched Flame Retardant for Epoxy Resins.” Chem. Eng. J., 381 122719. (2020)

    Article  CAS  Google Scholar 

  43. Wang, S, Ma, S, Xu, C, Liu, Y, Dai, J, Wang, Z, Liu, X, Chen, J, Shen, X, Wei, J, Zhu, J, “Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties.” Macromolecules, 50 (5) 1892–1901. (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Nan, Y., Zhang, Y. et al. Synthesis and properties of phosphorus-containing cardanol-based acrylates for flame-retardant UV/EB-cured coatings. J Coat Technol Res 18, 1353–1364 (2021). https://doi.org/10.1007/s11998-021-00500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00500-1

Keywords

Navigation