Skip to main content

Advertisement

Log in

A novel waterborne fluorinated polyurethane–acrylate film for ultraviolet blocking and antiprotein fouling

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Waterborne polyurethane–acrylate (WPUA) as a surface protective coating has been widely used in industrial, architectural, and textile applications. To extend the application of WPUA in the biological field, a novel ultraviolet-fluorinated waterborne polyurethane–acrylate (UV-WFPUA) film, which contains 2, 4-dihydroxybenzophenone (DHBP) as the ultraviolet (UV) absorber and dodecafluoroheptyl methacrylate (DFMA) as the fluorine monomer, was prepared. The paper discussed the effect of UV absorber and fluorine monomer on the UV adsorption performance, thermo-stability, and physical and mechanical properties of the UV-WFPUA film. Furthermore, it explored the independent and cooperative effects of UV absorber and fluorine monomer in affecting the antiprotein fouling property on a quantitative level. Results show that the antiprotein fouling performance of UV-WFPUA film significantly weakened after adding 0.4 wt.% DHPB since the average protein concentration increased from 0.14 to 0.37 mg/mL. In contrast, after adding 9 wt.% DFMA, the average protein concentration dropped from 0.37 to 0.13 mg/mL, indicating the antiprotein fouling properties improved. Therefore, the addition of fluorine monomer will contribute to antiprotein fouling and eliminate the adhesion of UV absorber with proteins. The excellent antiprotein fouling, thermal, and optical properties endow the waterborne polyurethane–acrylate films with promising applications in corneal contact lenses or intraocular lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Wang, C, Li, X, Du, B, Li, P, Lai, X, Niu, Y, “Preparation and Properties of a Novel Waterborne Fluorinated Polyurethane–Acrylate Hybrid Emulsion.” Colloid and Polymer Science, 292 (3) 579–587 (2013). https://doi.org/10.1007/s00396-013-3107-6

    Article  CAS  Google Scholar 

  2. Lai, X, Liu, J, Wang, L, Ren, Q, “Study on Synthesis and Thermal Stability of Non-amine Waterborne Polyurethane-polyacrylate.” Journal of Applied Science and Engineering, 22 145–152 (2019). https://doi.org/10.6180/jase.201903_22(1).0014

    Article  Google Scholar 

  3. Lai, X, Song, P, Wang, L, “Preparation and Properties of Epoxy-modified Waterborne Polyurethane/polyacrylate Composite Emulsion with the Action of Polmerizable Emulsifier.” Journal of Applied Science and Engineering, 20 87–94 (2017). https://doi.org/10.6180/jase.2017.20.1.11

    Article  Google Scholar 

  4. Ma, L, Song, L, Li, F, Wang, H, Liu, B, “Preparation and Properties of Poly(Propylene Carbonate)-Based Waterborne Polyurethane-Acrylate Composite Emulsion.” Colloid and Polymer Science, 295 2299–2307 (2017). https://doi.org/10.1007/s00396-017-4198-2

    Article  Google Scholar 

  5. Li, W, Franco, D, Yang, M, Zhu, X, Zhang, H, Shao, Y, Zhu, J, “Investigation of the Performance of ATH Powders in Organic Powder Coatings.” Coatings, 9 (2) 110 (2019). https://doi.org/10.3390/coatings9020110

  6. Lu, L, Dai, G, Yan, L, Wang, L, Wang, L, Wang, Z, Wei, K, “In-Situ Low-Temperature Sol-Gel Growth of Nano-cerium Oxide Ternary Composite Films for Ultraviolet Blocking.” Optical Materials, 101 109724 (2020). https://doi.org/10.1016/j.optmat.2020.109724

    Article  CAS  Google Scholar 

  7. Amborski, LE, Buffalo., N.Y., “Organic Polymeric Structure Having an Ultraviolet Light Absorbent Compound Incorporated Therein.” US Patent 3,043,709 (1962)

    Google Scholar 

  8. Saadat-Monfared, A, Mohseni, M., “Polyurethane Nanocomposite Films Containing Nano-cerium Oxide as UV Absorber; Part 2: Structural and Mechanical Studies upon UV Exposure.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441 752–757 (2014). https://doi.org/10.1016/j.colsurfa.2012.10.064

  9. Nabais, CRJOD, Heron, BM, de Sousa, HC, Gil, MH, Sobral, AJFN, “Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens.” Journal of Biomaterials Science, Polymer Edition, 22 (1–3) 139–152 (2011). https://doi.org/10.1163/092050609x12580984253769

    Article  CAS  Google Scholar 

  10. Hong, W, Wang, R, Li, N, Gao, L, Jiao, TF, “Facile Preparation and Excellent Ultraviolet Shielding Application of Polyurethane-TiO2 Composite Microcapsules.” Particle & Particle Systems Characterization, 38 (1) (2021). https://doi.org/10.1002/ppsc.202000265

  11. Gause, S, Chauhan, A, “Incorporation of Ultraviolet (UV) Absorbing Nanoparticles in Contact Lenses for Class 1 UV Blocking.” Journal of Materials Chemistry B, 4 (2) 327–339 (2016). https://doi.org/10.1039/c5tb01532d

    Article  CAS  Google Scholar 

  12. Lei, H, He, D, Guo, Y, Tang, Y, Huang, H, “Synthesis and Characterization of UV-absorbing Fluorine-Silicone Acrylic Resin Polymer.” Applied Surface Science, 442 71–77 (2018). https://doi.org/10.1016/j.apsusc.2018.02.134

    Article  CAS  Google Scholar 

  13. Galindo, TGP, Chai, Y, Tagaya, M, “Hydroxyapatite Nanoparticle Coating on Polymer for Constructing Effective Biointeractive Interfaces.” Journal of Nanomaterials, 2019 1–23 (2019). https://doi.org/10.1155/2019/6495239

    Article  CAS  Google Scholar 

  14. Meng, H, Cheng, Q, Li, C, “Polyacrylonitrile-Based Zwitterionic Ultrafiltration Membrane with Improved Anti-protein-Fouling Capacity.” Applied Surface Science, 303 399–405 (2014). https://doi.org/10.1016/j.apsusc.2014.03.015

    Article  CAS  Google Scholar 

  15. Lin, Q, Xu, X, Wang, B, Shen, C, Tang, J, Han, Y, Chen, H, “Hydrated Polysaccharide Multilayer as an Intraocular Lens Surface Coating for Biocompatibility Improvements.” Journal of Materials Chemistry B, 3 (18) 3695–3703 (2015). https://doi.org/10.1039/c5tb00111k

    Article  CAS  Google Scholar 

  16. Zhang, W, Li, G, Lin, Y, Wang, L, Wu, S, “Preparation and Characterization of Protein-Resistant Hydrogels for Soft Contact Lens Applications via Radical Copolymerization Involving a Zwitterionic Sulfobetaine Comonomer.” Journal of Biomaterials Science, Polymer Edition, 28 (16) 1935–1949 (2017). https://doi.org/10.1080/09205063.2017.1363127

    Article  CAS  Google Scholar 

  17. Luensmann, D, Jones, L, “Protein Deposition on Contact Lenses: The Past, the Present, and the Future.” Contact Lens and Anterior Eye, 35 (2) 53–64 (2012). https://doi.org/10.1016/j.clae.2011.12.005

    Article  Google Scholar 

  18. Kraff, MC, Sanders, DR, Jampol, LM, Lieberman, HL, “Effect of an Ultraviolet-filtering Intraocular Lens on Cystoid Macular Edema.” Ophthalmology, 92 (3) 366–369 (1985). https://doi.org/10.1016/S0161-6420(85)34024-1

  19. Bergmanson, JPG, Söderberg, PG, “The Significance of Ultraviolet Radiation for Eye Diseases. A Review with Comments on the Efficacy of UV-blocking Contact Lenses.” Ophthalmic & Physiological Optics15 (2) 83–91 (1995). https://doi.org/10.1046/j.1475-1313.1995.9598237h.x

  20. Roach, P, Farrar, D, Perry, CC, “Interpretation of Protein Adsorption: Surface-Induced Conformational Changes.” Journal of the American Chemical Society, 127 (22) 8168–8173 (2005). https://doi.org/10.1021/ja042898o

    Article  CAS  Google Scholar 

  21. Jeon, JH, Park, YG, Lee, YH, Lee, DJ, Kim, HD, “Preparation and Properties of UV-curable Fluorinated Polyurethane Acrylates Containing Crosslinkable Vinyl Methacrylate for Antifouling Coatings.” Journal of Applied Polymer Science, 132 (26) 42168–42177 (2015). https://doi.org/10.1002/app.42168

    Article  CAS  Google Scholar 

  22. Gudipati, CS, Finlay, JA, Callow, JA, Callow, ME, Wooley, KL, “The Antifouling and Fouling-Release Performance of Hyperbranched Fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling Alga Ulva.” Langmuir, 21 3044–3053 (2005). https://doi.org/10.1021/la048015o

    Article  CAS  Google Scholar 

  23. Weinman, CJ, Gunari, N, Krishnan, S, Dong, R, Paik, MY, Sohn, KE, Walker, GC, Kramer, EJ, Fischer, DA, Ober, CK, “Protein Adsorption Resistance of Anti-biofouling Block Copolymers Containing Amphiphilic Side Chains.” Soft Matter, 6 (14) 3237–3243 (2010). https://doi.org/10.1039/b925114f

    Article  CAS  Google Scholar 

  24. Gao, J, Yan, D, Ni, H, Wang, L, Yang, Y, Wang, X, “Protein-Resistance Performance Enhanced by Formation of Highly-Ordered Perfluorinated Alkyls on Fluorinated Polymer Surfaces.” Journal of Colloid and Interface Science, 393 361–368 (2013). https://doi.org/10.1016/j.jcis.2012.10.034

    Article  CAS  Google Scholar 

  25. Hasebe, T, Yohena, S, Kamijo, A, Okazaki, Y, Hotta, A, Takahashi, K, Suzuki, T, “Fluorine Doping into Diamond-Like Carbon Coatings Inhibits Protein Adsorption and Platelet Activation.” Journal of Biomedical Materials Research Part A, 83A (4) 1192–1199 (2007). https://doi.org/10.1002/jbm.a.31340

    Article  CAS  Google Scholar 

  26. Huang, Y, Lv, Z, Cao, Z, Huang, C, “A Green and Facile Method to Fabricate Superhydrophobic Coatings.” Surface Engineering, 35 (5) 435–439 (2019). https://doi.org/10.1080/02670844.2018.1458491

  27. Jiang, W, Grozea, CM, Shi, Z, Liu, G, “Fluorinated Raspberry-Like Polymer Particles for Superamphiphobic Coatings.” ACS Applied Materials & Interfaces, 6 (4) 2629–2638 (2014). https://doi.org/10.1021/am4051074

    Article  CAS  Google Scholar 

  28. Xia, U, Wang, X, Zhang, W, Han, X, Chen, P, Jiang, Y, “Improving the Wettability and Antiprotein Adsorption Property of PDMS by Swelling-Deswelling Approach.” Journal of Coatings Technology and Research, 16 (2) 353–361 (2019). https://doi.org/10.1007/s11998-018-0070-7

    Article  CAS  Google Scholar 

  29. Wu, C, Chang, W, Qi, H, Long, L, Zhao, J, Yuan, X, Li, Z, Yang, X, “A Facile Technique for Fabricating Poly(2-methacryloyloxyethy phosphorylcholine) Coatings on Titanium Alloys.” Journal of Coatings Technology and Research, 14 (5) 1127–1135 (2017). https://doi.org/10.1007/s11998-016-9900-7

    Article  CAS  Google Scholar 

  30. Wang, H, Liu, W, Tan, J, G, X, “Synthesis and Characterization of Novel UV-curable Fluorinated Polyurethane-Acrylate Copolymer.” Chemical Research in Chinese Universities, 32 (2) 311–317 (2016). https://doi.org/10.1007/s40242-016-5272-x

  31. Zhao, M, Li, H, Wen, L, Yu, Z, Zhang, S, Han, Z, “Synthesis and Characterization of Fluorine-Containing Polyurethane-Acrylate Core-Shell Emulsion.” Journal of Applied Polymer Science, 133 (17) 43357 (2016).https://doi.org/10.1002/app.43357

  32. Jiao, Z, Wang, X, Yang, Q, Wang, C, “Modification and Characterization of Urethane Acrylate Oligomers Used for UV-curable Coatings.” Polymer Bulletin, 74 (7) 2497–2511 (2016). https://doi.org/10.1007/s00289-016-1847-4

    Article  CAS  Google Scholar 

  33. Park, JM, Lee, YH, Park, H, Kim, HD, “Preparation and Properties of UV-curable Fluorinated Polyurethane Acrylates.” Journal of Applied Polymer Science, 131 (16) 40603 (2014). https://doi.org/10.1002/app.40603

  34. Bozukova, D, Bertrand, V, Pagnoulle, C, De Pauw-Gillet, MC, “ Evaluation of a Class of Polyurethane Materials for Intraocular Lens Manufacturing.” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (6) 1274–1286 (2014). https://doi.org/10.1002/jbm.b.33305

    Article  CAS  Google Scholar 

  35. Wang, X, Wang, H, Zhang, D. X, Hou, L, Jiang, H., “Preparation and Properties of Core-shell Structure Fluorinemodified Acrylic Anticorrosion Coatings.” International Journal of Electrochemical Science, 14 777–791 (2019). https://doi.org/10.20964/2019.01.70

  36. Zhong, X, Lin, J, Wang, Z, Xiao, C, Yang, H, Wang, J, Wu, X, “Preparation of a Crosslinked Coating Containing Fluorinated Water-Dispersible Polyurethane Particles.” Progress in Organic Coatings, 99 216–222 (2016). https://doi.org/10.1016/j.porgcoat.2016.05.021

    Article  CAS  Google Scholar 

  37. Liu, H, Zhang, G, Lu, L, Chen, Y, Luo, M, Bian, J, Wang, Z, Wang, L., “Influence of Varied Fluorine Contents on Long-Term Storage Stability of Polyacrylate Nanoparticles and Film Properties.” Journal of Nanomaterials, 2019 1–9 (2019). https://doi.org/10.1155/2019/2970819

  38. Chai, SL, Jin, MM, Tan, HM, “Comparative study Between Core–Shell and Interpenetrating Network Structure Polyurethane/polyacrylate Composite Emulsions.” European Polymer Journal, 44 (10) 3306–3313 (2008). https://doi.org/10.1016/j.eurpolymj.2008.07.038

    Article  CAS  Google Scholar 

  39. Arukula, R, Thota, AR, Rao, CRK, Narayan, R, Sreedhar, B, “Novel Electrically Conducting Polyurethanes with Oligoanilines: Synthesis, Conductivity, and Electrochemical Properties.” Journal of Applied Polymer Science, 131 (18) 40794 (2014). https://doi.org/10.1002/app.40794

    Article  CAS  Google Scholar 

  40. Zhao, Z, Li, X, Li, P, Wang, C, Luo, Q., “Study on Properties of Waterborne Fluorinated Polyurethane/acrylate Hybrid Emulsion and Films.” Journal of Polymer Research, 21 (6) 460 (2014). https://doi.org/10.1007/s10965-014-0460-1

  41. Lindner, E, “A Low Surface Free Energy Approach in the Control of Marine Biofouling.” Biofouling, 6 (2) 193–205 (1992). https://doi.org/10.1080/08927019209386222

    Article  CAS  Google Scholar 

  42. Wu, J, Zhang, R, Li, P, Ma, G, Hou, C, Zhang, H., “Synthesis of Fluorinated Polyacrylic Acrylate Oligomer for the UV-Curable Coatings.” Journal of Coatings Technology and Research, 16 (3) 681–688 (2019). https://doi.org/10.1007/s11998-018-0145-5

  43. Fu, JC, Yu, HJ, Wang, L, Fahad, S, “Preparation and Properties of UV-Curable Diamine-based Polyurethane Acrylate Hard Coatings.” Applied Surface Science, 533 147442 (2020). https://doi.org/10.1016/j.apsusc.2020.147442

    Article  CAS  Google Scholar 

  44. Luo, Q, Shen, Y, Li, P, Wang, C, Zhao, Z., “Synthesis and Characterization of Crosslinking Waterborne Fluorinated Polyurethane-Acrylate with Core-Shell Structure.” Journal of Applied Polymer Science, 131 (21) 40970 (2014). https://doi.org/10.1002/app.40970

  45. Xu, J, Jiang, Y, Zhang, T, Dai, Y, Yang, D, Qiu, F, Yu, z, Yang, P, “Fabrication of UV-Curable Waterborne Fluorinated Polyurethane-Acrylate and Its Application for Simulated Iron Cultural Relic Protection.” Journal of Coatings Technology and Research, 15 (3) 535–541(2018). https://doi.org/10.1007/s11998-017-0009-4

  46. Wang, S, Yue, K, Liu, L, Yang, W, “Photoreactive, Core–Shell Cross-Linked/Hollow Microspheres Prepared by Delayed Addition of Cross-Linker in Dispersion Polymerization for Antifouling and Immobilization of Protein.” Journal of Colloid and Interface Science, 389 (1) 126–133 (2013). https://doi.org/10.1016/j.jcis.2012.08.047

    Article  CAS  Google Scholar 

  47. Misra, A, Jarrett, WL, Urban, MW, “New Poly(methyl methacrylate)/n-Butyl Acrylate/Pentafluorostyrene/Poly(ethylene glycol) (p-MMA/nBA/PFS/PEG) Colloidal Dispersions: Synthesis, Film Formation, and Protein Adsorption.” Macromolecules, 42 (19) 7299–7308 (2009). https://doi.org/10.1021/ma9002193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Science and Technology Research Projects of Lishui Sci-tech Bureau (No. 2019GYX01), the Project of New Seedling Talents Program of Zhejiang Province (No. 2018R434004), the General Research Projects of Zhejiang Provincial Department of Education (No. Y201840153), and Lishui City High-level Talent Training Funding Project (2017RC12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zefeng Wang or Sihai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Nie, Q., Guan, H. et al. A novel waterborne fluorinated polyurethane–acrylate film for ultraviolet blocking and antiprotein fouling. J Coat Technol Res 18, 1295–1307 (2021). https://doi.org/10.1007/s11998-021-00492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00492-y

Keywords

Navigation