Skip to main content
Log in

Polycaprolactone tridentate ligand corrosion inhibitors coated on biodegradable Mg implant

  • Brief Communication
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Magnesium (Mg) is widely used in different tissue engineering applications such as bone fracture fixations and cardiovascular stent applications. However, it exhibits high degradation properties in the physiological medium and hence loses its mechanical properties. Herein, AZ31 Mg alloy was spin-coated with polycaprolactone (PCL) polymer blended with Schiff base derived from amino acid as a corrosion inhibitor. Coated samples were characterized using field emission electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR) analysis. Additionally, corrosion behavior was evaluated using electrochemical potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Moreover, the bioactivity of the studied samples was confirmed in vitro with MC3T3-E1 osteoblasts cells. Results show that coated samples with corrosion inhibition efficiency of blended PCL and L-isoleucine Schiff (PCL-SI) reached 66% compared to that of pure PCL 39%. This suggests that the introduced materials were superior to control biodegradability and biocompatibility of the bare alloy in bone tissue engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Son, D, Lee, J, Lee, DJ, Ghaffari, R, Yun, S, Kim, SJ, Lee, JE, Cho, HR, Yoon, S, Yang, S, Lee, S, Qiao, S, Ling, D, Shin, S, Song, J-K, Kim, J, Kim, T, Lee, H, Kim, J, Soh, M, Lee, N, Hwang, CS, Nam, S, Lu, N, Hyeon, T, Choi, SH, Kim, D-H, “Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases.” ACS Nano, 9 (6) 5937–5946 (2015)

    Article  CAS  Google Scholar 

  2. Li, H, Zheng, Y, Qin, L, “Progress of Biodegradable Metals.” Prog. Nat. Sci. Mater. Int., 24 (5) 414–422 (2014)

    Article  CAS  Google Scholar 

  3. Tang, H, Gao, Y, “Preparation and Characterization of Hydroxyapatite Containing Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation.” J. Alloys Compd., 688 699–708 (2016)

    Article  CAS  Google Scholar 

  4. Mousa, HM, Hussein, KH, Woo, HM, Park, CH, Kim, CS, “One-Step Anodization Deposition of Anticorrosive Bioceramic Compounds on AZ31B Magnesium Alloy for Biomedical Application.” Ceram. Int., 41 (9A) 10861–10870 (2015)

    Article  CAS  Google Scholar 

  5. Mousa, HM, Tiwari, AP, Kim, J, Adhikari, SP, Park, CH, Kim, CS, “A Novel In Situ Deposition of Hydroxyapatite Nanoplates Using Anodization/Hydrothermal Process Onto Magnesium Alloy Surface Towards Third Generation Biomaterials.” Mater. Lett., 164 144–147 (2016)

    Article  CAS  Google Scholar 

  6. Mousa, HM, Hussein, KH, Pant, HR, Woo, HM, Park, CH, Kim, CS, “In Vitro Degradation Behavior and Cytocompatibility of a Bioceramic Anodization Films on the Biodegradable Magnesium Alloy.” Colloids Surf. A: Physicochem. Eng. Asp., 488 82–92 (2016)

    Article  CAS  Google Scholar 

  7. Liu, GY, Hu, J, Ding, ZK, Wang, C, “Bioactive Calcium Phosphate Coating Formed on Micro-arc Oxidized Magnesium by Chemical Deposition.” Appl. Surf. Sci., 257 (6) 2051–2057 (2011)

    Article  CAS  Google Scholar 

  8. Li, Z, Guo, L, Yao, H, Di, X, Xing, K, Tu, J, Gu, C, “Formation and In Vitro Evaluation of a Deep Eutectic Solvent Conversion Film on Biodegradable Magnesium Alloy.” ACS Appl. Mater. Interfaces, 12 (29) 33315–33324 (2020)

    Article  CAS  Google Scholar 

  9. Mousa, HM, Abdal-hay, A, Bartnikowski, M, Mohamed, IMA, Yasin, AS, Ivanovski, S, Park, CH, Kim, CS, “A Multifunctional Zinc Oxide/Poly(Lactic Acid) Nanocomposite Layer Coated on Magnesium Alloys for Controlled Degradation and Antibacterial Function.” ACS Biomater. Sci. Eng., 4 (6) 2169–2180 (2018)

    Article  CAS  Google Scholar 

  10. Kim, J, Mousa, HM, Park, CH, Kim, CS, “Enhanced Corrosion Resistance and Biocompatibility of AZ31 Mg Alloy Using PCL/ZnO NPs via Electrospinning.” Appl. Surf. Sci., 396 249–258 (2017)

    Article  CAS  Google Scholar 

  11. Yin, Z-Z, Qi, W-C, Zeng, R-C, Chen, X-B, Gu, C-D, Guan, S-K, Zheng, Y-F, “Advances in Coatings on Biodegradable Magnesium Alloys.” J. Magn. Alloys, 8 (1) 42–65 (2020)

    Article  CAS  Google Scholar 

  12. Smith, R, Inomata, H, Peters, C, “Historical Background and Applications.” In: Smith, R, Inomata, H, Peters, C (eds.) Supercritical Fluid Science and Technology, Elsevier, Amsterdam, pp. 175–273 (2013)

    Google Scholar 

  13. Rohner, D, Hutmacher, DW, Cheng, TK, Oberholzer, M, Hammer, B, “In Vivo Efficacy of Bone-Marrow-Coated Polycaprolactone Scaffolds for the Reconstruction of Orbital Defects in the Pig.” J. Biomed. Mater. Res. Part B: Appl. Biomater., 66B (2) 574–580 (2003)

    Article  CAS  Google Scholar 

  14. Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, KMC, “A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants.” Biomaterials, 31 (8) 2084–2096 (2010)

    Article  CAS  Google Scholar 

  15. Makkar, P, Kang, HJ, Padalhin, AR, Park, I, Moon, B-G, Lee, BT, “Development and Properties of Duplex MgF2/PCL Coatings on Biodegradable Magnesium Alloy for Biomedical Applications.” PloS one, 13 (4) e0193927–e0193927 (2018)

    Article  Google Scholar 

  16. Tian, P, Xu, D, Liu, X, “Mussel-Inspired Functionalization of PEO/PCL Composite Coating on a Biodegradable AZ31 Magnesium Alloy.” Colloids Surf. B: Biointerfaces, 141 327–337 (2016)

    Article  CAS  Google Scholar 

  17. Li, L-Y, Cui, L-Y, Zeng, R-C, Li, S-Q, Chen, X-B, Zheng, Y, Kannan, MB, “Advances in Functionalized Polymer Coatings on Biodegradable Magnesium Alloys—A Review.” Acta Biomater., 79 23–36 (2018)

    Article  CAS  Google Scholar 

  18. Soleymani, F, Emadi, R, Sadeghzade, S, Tavangarian, F, “Applying Baghdadite/PCL/Chitosan Nanocomposite Coating on AZ91 Magnesium Alloy to Improve Corrosion Behavior, Bioactivity, and Biodegradability.” Coatings, 9 (12) 789 (2019)

    Article  CAS  Google Scholar 

  19. Nandhini, G, Nivedha, B, Pranesh, M, Karthega, M, “Study of Polycaprolactone/Curcumin Loaded Electrospun Nanofibers on AZ91 Magnesium Alloy. Mater.” Today Proc., 33 2170–2173 (2020)

    Article  CAS  Google Scholar 

  20. Bakhsheshi-Rad, HR, Ismail, AF, Aziz, M, Hadisi, Z, Omidi, M, Chen, X, “Antibacterial Activity and Corrosion Resistance of Ta2O5 Thin Film and Electrospun PCL/MgO-Ag Nanofiber Coatings on Biodegradable Mg Alloy Implants.” Ceramics International, 45 (9) 11883–11892 (2019)

    Article  CAS  Google Scholar 

  21. Rezk, AI, Mousa, HM, Lee, J, Park, CH, Kim, CS, “Composite PCL/HA/Simvastatin Electrospun Nanofiber Coating on Biodegradable Mg Alloy for Orthopedic Implant Application.” J. Coat. Technol. Res., 16 (2) 477–489 (2019)

    Article  CAS  Google Scholar 

  22. Li, K, Wang, B, Zhou, J, Li, S-Y, Huang, P-R, “In Vitro Corrosion Resistance and Cytocompatibility of Mg66Zn28Ca6 Amorphous Alloy Materials Coated with a Double-Layered nHA and PCL/nHA Coating.” Colloids Surf. B: Biointerfaces, 196 111251 (2020)

    Article  CAS  Google Scholar 

  23. Jia, S, Guo, Y, Zai, W, Su, Y, Yuan, S, Yu, X, Xu, Y, Li, G, “Preparation and Characterization of a Composite Coating Composed of Polycaprolactone (PCL) and Amorphous Calcium Carbonate (ACC) Particles for Enhancing Corrosion Resistance of Magnesium Implants.” Prog. Org. Coat., 136 105225 (2019)

    Article  CAS  Google Scholar 

  24. Abd El-Lateef, HM, “Experimental and Computational Investigation on the Corrosion Inhibition Characteristics of Mild Steel by Some Novel Synthesized Imines in Hydrochloric Acid Solutions.” Corros. Sci., 92 104–117 (2015)

    Article  CAS  Google Scholar 

  25. Abd El-Lateef, HM, Mohamed, IMA, Zhu, J-H, Khalaf, MM, “An Efficient Synthesis of Electrospun TiO2-Nanofibers/Schiff Base Phenylalanine Composite and Its Inhibition Behavior for C-steel Corrosion in Acidic Chloride Environments.” J. Taiwan Inst. Chem. Eng., 112 306–321 (2020)

    Article  CAS  Google Scholar 

  26. Moreno, D, Daier, V, Palopoli, C, Tuchagues, J-P, Signorella, S, “Synthesis, Characterization and Antioxidant Activity of Water Soluble MnIII Complexes of Sulphonato-Substituted Schiff Base Ligands.” J. Inorganic Biochem., 104 (5) 496–502 (2010)

    Article  CAS  Google Scholar 

  27. Conceicao, TF, Scharnagl, N, Blawert, C, Dietzel, W, Kainer, KU, “Corrosion Protection of Magnesium Alloy AZ31 Sheets by Spin Coating Process with Poly(Ether Imide) [PEI].” Corrosion Sci., 52 (6) 2066–2079 (2010)

    Article  CAS  Google Scholar 

  28. Zhu, Y, Gao, C, Shen, J, “Surface Modification of Polycaprolactone with Poly(Methacrylic Acid) and Gelatin Covalent Immobilization for Promoting Its Cytocompatibility.” Biomaterials, 23 (24) 4889–4895 (2002)

    Article  CAS  Google Scholar 

  29. Jokar, M, Darvishi, S, Torkaman, R, Kharaziha, M, Karbasi, M, “Corrosion and Bioactivity Evaluation of Nanocomposite PCL-Forsterite Coating Applied on 316L Stainless Steel.” Surf. Coat. Technol., 307 324–331 (2016)

    Article  CAS  Google Scholar 

  30. Mousa, HM, Hussein, KH, Raslan, AA, Lee, J, Woo, HM, Park, CH, Kim, CS, “Amorphous Apatite Thin Film Formation on a Biodegradable Mg Alloy for Bone Regeneration: Strategy, Characterization, Biodegradation, and In Vitro Cell Study.” RSC Adv., 6 (27) 22563–22574 (2016)

    Article  CAS  Google Scholar 

  31. Mousa, HM, Lee, DH, Park, CH, Kim, CS, “A Novel Simple Strategy for In Situ Deposition of Apatite Layer on AZ31B Magnesium Alloy for Bone Tissue Regeneration.” Appl. Surf. Sci., 351 55–65 (2015)

    Article  CAS  Google Scholar 

  32. Udhayan, R, Bhatt, DP, “On the Corrosion Behaviour of Magnesium and Its Alloys Using Electrochemical Techniques.” J. Power Sources, 63 (1) 103–107 (1996)

    Article  CAS  Google Scholar 

  33. Mousa, HM, Aggas, JR, Guiseppi-Elie, A, “Electropolymerization of Aniline and (N-Phenyl-o-Phenylenediamine) for Glucose Biosensor Application.” Mater. Lett., 238 267–270 (2019)

    Article  CAS  Google Scholar 

  34. El-Lateef, HMA, Ismael, M, Mohamed, IMA, “Novel Schiff Base Amino Acid as Corrosion Inhibitors for Carbon Steel in CO2-Saturated 35% NaCl Solution: Experimental and Computational Study.” Corrosion Rev., 33 (1–2) 77 (2015)

    Article  Google Scholar 

  35. Sezer, N, Evis, Z, Kayhan, SM, Tahmasebifar, A, Koç, M, “Review of Magnesium-Based Biomaterials and Their Applications.” J. Magn. Alloys, 6 (1) 23–43 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported financially by the Science and Technology Development Fund (STDF), Egypt (Grant No.13883).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamouda M. Mousa or Ibrahim M. A. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousa, H.M., Mahmoud, M.A., Yasin, A.S. et al. Polycaprolactone tridentate ligand corrosion inhibitors coated on biodegradable Mg implant. J Coat Technol Res 18, 1191–1197 (2021). https://doi.org/10.1007/s11998-021-00478-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00478-w

Keywords

Navigation