Skip to main content

Advertisement

Log in

CO2-triggered hydrophobic/hydrophilic switchable waterborne polyurethane–acrylate with simultaneously improved water resistance and mechanical properties

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Traditional waterborne polyurethane (WPU) has poor water resistance because of the incorporation of permanent hydrophilic groups, such as carboxyl group or ammonium salt, into polymer chains. Therefore, developing WPU with excellent water resistance and mechanical properties is highly desirable for industrial applications. In this study, CO2-triggered hydrophobic/hydrophilic switchable waterborne polyurethane–acrylate (WPUA) containing methyl methacrylate (MMA) units were designed and synthesized. The molecular structure, hydrophobic/hydrophilic switchable behavior, water resistance, and mechanical properties were systematically investigated and characterized. The WPUA with 10 wt% MMA exhibited a low water uptake (2.15 wt%) and linear swelling ratio (0.17 L%), as well as a high tensile strength (16.7 MPa) and modulus (85.9 MPa), which were much higher than those of the pristine WPU. This study indicated that the CO2-triggered WPUA dispersed stably as latex particles in water and possessed excellent water resistance and mechanical properties after the film formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Engels, HW, Pirkl, HG, Albers, R, Albach, RW, Krause, J, Hoffmann, A, Casselmann, H, Dormish, J, “Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges.” Angew. Chem. Int. Ed., 52 9422–9441 (2013)

    Article  CAS  Google Scholar 

  2. Kang, SY, Ji, Z, Tseng, LF, Turner, SA, Villanueva, DA, Johnson, R, Albano, A, Langer, R, “Design and Synthesis of Waterborne Polyurethanes.” Adv. Mater., 30 1706237–1706243 (2018)

    Article  CAS  Google Scholar 

  3. Liu, ZQ, Chen, HX, Hu, G, Wang, J, Xin, YF, Xiang, CX, Zhou, Y, “Excellent Water Resistance and Mechanically Robust Waterborne Polyurethane-Acrylate Based on Dithiol Post-Chain Extension.” J. Coat. Technol. Res., 17 1065–1074 (2020)

    Article  CAS  Google Scholar 

  4. Shi, CY, Zhang, Q, Yu, CY, Rao, SJ, Yang, S, Tian, H, Qu, DH, “An Ultrastrong and Highly Stretchable Polyurethane Elastomer Enabled by a Zipper-Like Ring-Sliding Effect.” Adv. Mater., 32 2000345–2000351 (2020)

    Article  CAS  Google Scholar 

  5. Peng, XX, Liu, Y, Xin, BJ, Guo, HY, Yu, YG, “Preparation and Characterization of Waterborne Polyurethane Nail Enamel Modified by Silane Coupling Agent.” J. Coat. Technol. Res. 17 1377–1387 (2020)

  6. Chattopadhyay, DK, Raju, KVSN, “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32 352–418 (2007)

    Article  CAS  Google Scholar 

  7. Alexandru, M, Cazacu, M, Cristea, M, Nistor, A, Grigoras, C, Simionescu, BC, ‘‘Poly(Siloxane-Urethane) Crosslinked Structures Obtained by Sol-Gel Technique.” J. Polym. Sci., Part A: Polym. Chem., 49 1708–1718 (2011)

    Article  CAS  Google Scholar 

  8. Xu, JC, Rong, XS, Chi, TY, Wang, M, Wang, YY, Yang, DY, Qiu, FX, “Preparation, Characterization of UV-Curable Waterborne Polyurethane-Acrylate and the Application in Metal Iron Surface Protection.” J. Appl. Polym. Sci., 130 3142–3152 (2013)

    Article  CAS  Google Scholar 

  9. Zhang, FY, Liu, WQ, Wang, S, Jiang, C, Xie, YK, Yang, MP, Shi, HY, “A Novel and Feasible Approach for Polymer Amine Modified Graphene Oxide to Improve Water Resistance, Thermal, and Mechanical Ability of Waterborne Polyurethane.” Appl. Surf. Sci., 491 301–312 (2019)

    Article  CAS  Google Scholar 

  10. Fang, ZH, Duan, HY, Zhang, ZH, Wang, J, Li, DQ, Huang, YX, Shang, JJ, Liu, ZY, “Novel Heat-Resistance UV Curable Waterborne Polyurethane Coatings Modified by Melamine.” Appl. Surf. Sci., 257 4765–4768 (2011)

    Article  CAS  Google Scholar 

  11. Wen, JT, Sun, Z, Fan, HJ, Chen, Y, Yan, J, “Synthesis and Characterization of a Novel Fluorinated Waterborne Polyurethane.” Prog. Org. Coat., 131 291–300 (2019)

    Article  CAS  Google Scholar 

  12. Lin, RQ, Zhang, Y, Li, H, Shi, Y, Zhou, C, “Tailoring the Morphology and Properties of Waterborne Polyurethanes by Incorporation of Acrylic Monomers.” Prog. Org. Coat., 135 65–73 (2019)

    Article  CAS  Google Scholar 

  13. Mo, QF, Li, WZ, Yang, HJ, Gu, FM, Chen, QZ, Yang, RX, “Water Resistance and Corrosion Protection Properties of Waterborne Polyurethane Coating Enhanced by Montmorillonite Modified with Ce3+.” Prog. Org. Coat., 136 105213–105223 (2019)

    Article  CAS  Google Scholar 

  14. Zhang, Q, Yu, G, Wang, WJ, Yuan, H, Li, BG, Zhu, S, “Preparation of N2/CO2 Triggered Reversibly Coagulatable and Redispersible Latexes by Emulsion Polymerization of Styrene with a Reactive Switchable Surfactant.” Langmuir, 28 5940–5946 (2012)

    Article  CAS  Google Scholar 

  15. Darabi, A, Jessop, PG, Cunningham, MF, “CO2-Responsive Polymeric Materials: Synthesis, Self-Assembly, and Functional Applications.” Chem. Soc. Rev., 45 4391–4436 (2016)

    Article  CAS  Google Scholar 

  16. Liu, HB, Lin, SJ, Feng, YJ, Theato, P, “CO2-Responsive Polymer Materials.” Polym. Chem., 8 12–23 (2017)

    Article  CAS  Google Scholar 

  17. Wang, Z, Ma, Z, Wang, Y, Xu, Z, Luo, Y, Wei, Y, Jia, X, “A Novel Mechanochromic and Photochromic Polymer Film: When Rhodamine Joins Polyurethane.” Adv. Mater., 27 6469–6474 (2015)

    Article  CAS  Google Scholar 

  18. Huang, X, Sun, Y, Soh, S, “Stimuli-Responsive Surfaces for Tunable and Reversible Control of Wettability.” Adv. Mater., 27 4062–4068 (2015)

    Article  CAS  Google Scholar 

  19. Liu, Y, Wang, XW, Fei, B, Hu, HW, Lai, CI, Xin, JH, ‘‘Bioinspired, Stimuli-Responsive, Multifunctional Superhydrophobic Surface with Directional Wetting, Adhesion, and Transport of Water.” Adv. Funct. Mater., 25 5047–5056 (2015)

    Article  CAS  Google Scholar 

  20. Yang, GW, He, XT, Cheng, S, Li, XL, Yang, SZ, Wei, HB, Ding, YS, “A CO2-Triggered Hydrophobic/Hydrophilic Switchable Polyurethane.” Appl. Surf. Sci., 456 270–275 (2018)

    Article  CAS  Google Scholar 

  21. Yang, W, Cheng, X, Wang, HB, LiuDu, YSZL, ‘‘Surface and Mechanical Properties of Waterborne Polyurethane Films Reinforced by Hydroxyl-Terminated Poly(Fluoroalkyl Methacrylates)”. Polymer, 133 68–77 (2017)

    Article  CAS  Google Scholar 

  22. Peruzzo, PJ, Anbinder, PS, Pardini, OR, Vega, J, Costa, CA, Galembeck, F, Amalvy, JI, “Waterborne Polyurethane/Acrylate: Comparison of Hybrid and Blend Systems.” Prog. Org. Coat., 72 429–437 (2011)

    Article  CAS  Google Scholar 

  23. Mu, M, Yin, HY, Feng, YJ, “CO2-Responsive Polyacrylamide Microspheres with Interpenetrating Networks.” J. Colloid Interface Sci., 497 249–257 (2017)

    Article  CAS  Google Scholar 

  24. Li, JJ, Zheng, W, Zeng, WB, Zhang, DQ, Peng, XH, “Structure, Properties and Application of a Novel Low-Glossed Waterborne Polyurethane.” Appl. Surf. Sci., 307 255–262 (2014)

    Article  CAS  Google Scholar 

  25. Xu, JC, Jiang, Y, Zhang, T, Dai, YT, Yang, DY, Qiu, FX, Yu, ZP, Yang, PF, “Synthesis of UV-Curing Waterborne Polyurethane-Acrylate Coating and Its Photopolymerization Kinetics Using FT-IR and Photo-DSC Methods.” Prog. Org. Coat., 122 10–18 (2018)

    Article  CAS  Google Scholar 

  26. Fang, HG, Wang, HL, Sun, J, Wei, HB, Ding, YS, “Tailoring Elastomeric Properties of Waterborne Polyurethane by Incorporation of Polymethyl Methacrylate with Nanostructural Heterogeneity.” RSC Adv., 6 13589–13599 (2016)

    Article  CAS  Google Scholar 

  27. Das, S, Banthia, AK, Adhikari, B, “Removal of Chlorinated Volatile Organic Contaminants from Water by Pervaporation Using a Novel Polyurethane Urea–Poly (Methyl Methacrylate) Interpenetrating Network Membrane.” Chem. Eng. Sci., 61 6454–6467 (2006)

    Article  CAS  Google Scholar 

  28. Chilaka, N, Ghosh, S, “Dielectric Studies of Poly (Ethylene Glycol)-Polyurethane/Poly (Methylmethacrylate)/Montmorillonite Composite.” Electrochim. Acta, 134 232–241 (2014)

    Article  CAS  Google Scholar 

  29. Fang, CQ, Pan, SF, Wang, Z, Zhou, X, Lei, WQ, Cheng, YL, “Synthesis of Waterborne Polyurethane Using Snow as Dispersant: Structures and Properties Controlled by Polyols Utilization.” J. Mater. Sci. Technol., 35 1491–1498 (2019)

    Article  Google Scholar 

  30. Liu, Q, Liao, B, Pang, H, Lu, MG, Meng, YY, “Preparation and Characterization of a Self-Matting Coating Based on Waterborne Polyurethane-Polyacrylate Hybrid Dispersions.” Prog. Org. Coat., 143 105551–105558 (2020)

    Article  CAS  Google Scholar 

  31. Wei, HB, Zhang, JL, Shi, N, Liu, Y, Zhang, B, Zhang, J, Wan, XH, “A Recyclable Polyoxometalate-Based Supramolecular Chemosensor for Efficient Detection of Carbon Dioxide.” Chem. Sci., 6 7201–7205 (2015)

    Article  CAS  Google Scholar 

  32. Feng, ZX, Zheng, YD, Zhao, L, Zhang, ZY, Sun, Y, Qiao, K, Xie, YJ, Wang, YS, He, W, ‘‘An Ultrasound-Controllable Release System Based on Waterborne Polyurethane/Chitosan Membrane for Implantable Enhanced Anticancer Therapy.” Mater. Sci. Eng. C Mater. Biol. Appl., 104 109944–109957 (2019)

    Article  CAS  Google Scholar 

  33. Zhang, WB, Zhang, Y, Liang, HY, Liang, DS, Cao, HY, Liu, CG, Qian, Y, Lu, QM, Zhang, C, “High Bio-Content Castor Oil Based Waterborne Polyurethane/Sodium Lignosulfonate Composites for Environmental Friendly UV Absorption Application.” Ind. Crops Prod., 142 111836–111843 (2019)

    Article  CAS  Google Scholar 

  34. He, J, Wang, W, Yuan, CD, Zhang, TY, Chen, GH, “Mechanical Properties Improvement of Waterborne Polyurethane Coating Films After Rewetting and Drying.” Dry. Technol., 27 534–537 (2009)

    Article  CAS  Google Scholar 

  35. Lei, L, Xia, ZB, Ou, CB, Zhang, L, Zhong, L, “Effects of Crosslinking on Adhesion Behavior of Waterborne Polyurethane Ink Binder.” Prog. Org. Coat., 88 155–163 (2015)

    Article  CAS  Google Scholar 

  36. Xu, JC, Jiang, Y, Qiu, FX, Dai, YT, Yang, DY, Yu, Z, Yang, PF, ‘‘Synthesis, Mechanical Properties and Iron Surface Conservation Behavior of UV-Curable Waterborne Polyurethane-Acrylate Coating Modified with Inorganic Carbonate.” Polym. Bull., 75 4713–4734 (2018)

    Article  CAS  Google Scholar 

  37. Chen, JH, Peng, KM, Tu, WP, “Novel Waterborne UV-Curable Coatings Based on Hyperbranched Polymers via Electrophoretic Deposition.” RSC Adv., 9 11013–11025 (2019)

    Article  CAS  Google Scholar 

  38. Li, Y, Zhang, JJ, Hua, Y, Yang, SZ, Lu, SF, Wei, HB, Ding, YS, ‘‘Boosting the Performance of an Anion Exchange Membrane by the Formation of Well-Connected Ion Conducting Channels.” Polym. Chem., 10 2822–2831 (2019)

    Article  CAS  Google Scholar 

  39. Zhang, YF, Li, WW, Wu, RL, Wang, W, “PU/PMMA Composites Synthesized by Reaction-Induced Phase Separation: A General Approach to Achieve a Shape Memory Effect.” RSC Adv., 7 33701–33707 (2017)

    Article  CAS  Google Scholar 

  40. Liu, ZM, Wu, B, Jiang, YY, Lei, JX, Zhou, CL, Zhang, JH, Wang, JL, “Solvent-Free and Self-Catalysis Synthesis and Properties of Waterborne Polyurethane.” Polymer, 143 129–136 (2018)

    Article  CAS  Google Scholar 

  41. Fang, CQ, Zhou, X, Yu, Q, Liu, SL, Guo, DG, Yu, RE, Hu, JB, “Synthesis and Characterization of Low Crystalline Waterborne Polyurethane for Potential Application in Water-Based Ink Binder.” Prog. Org. Coat., 77 61–71 (2014)

    Article  CAS  Google Scholar 

  42. Xiao, LQ, Shi, J, Wu, K, Lu, MG, “Self-Healing Supramolecular Waterborne Polyurethane Based on Host-Guest Interactions and Multiple Hydrogen Bonds.” React. Funct. Polym., 148 104482–104493 (2020)

    Article  CAS  Google Scholar 

  43. Yu, FF, Cao, LW, Meng, ZH, Lin, NB, Liu, XY, “Crosslinked Waterborne Polyurethane with High Waterproof Performance.” Polym. Chem., 7 3913–3922 (2016)

    Article  CAS  Google Scholar 

  44. Chai, SL, Tan, HM, “Structure and Property Characterization of Nanograde Core-Shell Polyurethane/Polyacrylate Composite Emulsion.” J. Appl. Polym. Sci., 107 3499–3504 (2008)

    Article  CAS  Google Scholar 

  45. Wen, JT, Sun, Z, Xiang, J, Fan, HJ, Chen, Y, Yan, J, “Preparation and Characteristics of Waterborne Polyurethane with Various Lengths of Fluorinated Side Chains.” Appl. Surf. Sci., 494 610–618 (2019)

    Article  CAS  Google Scholar 

  46. Johari, GP, Hallbrucker, A, Mayer, E, “Calorimetric Relaxation and Glass Transition in Poly(Propylene Glycols) and Its Monomer.” J. Polym. Sci. B Polym. Phys., 26 1923–1930 (1988)

    Article  CAS  Google Scholar 

  47. Stouten, J, Vanpoucke, DEP, Van Assche, G, Bernaerts, KV, “UV-Curable Biobased Polyacrylates Based on a Multifunctional Monomer Derived from Furfural.” Macromolecules, 53 1388–1404 (2020)

    Article  CAS  Google Scholar 

  48. Li, SY, Liu, ZY, Hou, LJ, Chen, Y, Xu, TH, “Effect of Polyether/Polyester Polyol Ratio on Properties of Waterborne Two-Component Polyurethane Coatings.” Prog. Org. Coat., 141 105545–105555 (2020)

    Article  CAS  Google Scholar 

  49. Yi, TF, Ma, GZ, Hou, CY, Li, SS, Zhang, RF, Wu, JB, Hao, XG, Zhang, H, “Polyurethane-Acrylic Hybrid Emulsions with High Acrylic/Polyurethane Ratios: Synthesis, Characterization, and Properties.” J. Appl. Polym. Sci., 134 44488–44496 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51673056) and the University Synergy Innovation Program of Anhui Province (No. GXXT-2019-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsheng Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, Z., Yang, G. et al. CO2-triggered hydrophobic/hydrophilic switchable waterborne polyurethane–acrylate with simultaneously improved water resistance and mechanical properties. J Coat Technol Res 18, 989–998 (2021). https://doi.org/10.1007/s11998-021-00476-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00476-y

Keywords

Navigation