Skip to main content
Log in

Toward CNT-reinforced chitosan-based ceramic composite coatings on biodegradable magnesium for surgical implants

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Biomaterials containing carbon nanotubes (CNTs) represent a class of composites, which have generally been underexploited in the medical field. However, recognition of the potential utility of this class of composite materials may form the basis to develop new CNT biomaterials for implants and regenerative medicine scaffolds. Nanocomposite coatings containing chitosan matrix (CHI) reinforced with multiwall CNTs and CaHPO4 (DCPA) were deposited on pure magnesium substrates using a flexible chemical conversion approach. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were applied to characterize the morphological, chemical, and physical changes that occurred in the composite coatings. The in vitro degradation behavior of the composite-coated samples was evaluated using electrochemical impedance spectroscopy in Hank’s solution. Results showed that the tri-phasic composite coating (CHI/CNTs/DCPA) exhibits the highest electrochemical corrosion resistance in comparison with the bi-phasic composite coating (CHI/CNTs and CHI/DCPA) and monophasic CHI-coated magnesium. Potentiodynamic polarization results in Hank’s solution indicate that the corrosion potential of the tri-phasic coated Mg is − 1.5 V, while the corrosion current density reaches 0.36 µA/cm2. Functionalization of the Mg surface by activation at 75°C produces a rough surface that triggers a combination of chemical and physical interactions between the three phases and Mg ions present in the reaction medium. The bi-phasic (CHI/CNTS) and tri-phasic (CHI/CNTs/CaHPO4) composite coatings revealed high antibacterial performance against Staphylococcus aureus. These corrosion results and the successful deposition of CNT-reinforced CHI/DCPA on pure Mg substrate suggest that the conversion coating approach is effective for the production of new composite coatings for either regenerative medicine or functional implants. As such, the present research might lay the groundwork for a new generation of uses for this versatile class of composite coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hornberger, H, Virtanen, S, Boccaccini, AR, "Biomedical Coatings on Magnesium Alloys: A Review." Acta Biomater., 8 2442–2455 (2012)

    Article  CAS  Google Scholar 

  2. Virtanen, S, "Biodegradable Mg and Mg Alloys: Corrosion and Biocompatibility." Mater. Sci. Eng. B., 176 1600–1608 (2011)

    Article  CAS  Google Scholar 

  3. Heise, S, Virtanen, S, Boccaccini, AR, "Tackling Mg Alloy Corrosion by Natural Polymer Coatings: A Review." J. Biomed. Mater. Res. Part A, 104 2628–2641 (2016)

    Article  CAS  Google Scholar 

  4. Abdel-Gawad, SA, Shoeib, MA, "Corrosion Studies and Microstructure of Mg−Zn−Ca Alloys for Biomedical Applications." Surf. Interfaces, 14 108–116 (2019)

    Article  CAS  Google Scholar 

  5. Shadanbaz, S, Dias, JG, "Calcium Phosphate Coatings on Magnesium Alloys for Biomedical Applications: A Review." Acta Biomater., 8 20–30 (2012)

    Article  CAS  Google Scholar 

  6. Wang, S, McDonnell, EH, Sedor, FA, Toffaletti, JG, "pH Effects on Measurements of Ionized Calcium and Ionized Magnesium in Blood." Arch. Pathol. Lab. Med., 126 947–50 (2002)

    Article  CAS  Google Scholar 

  7. Dash, M, Chiellini, F, Ottenbrite, RM, Chiellini, E, "Chitosan: A Versatile Semi-synthetic Polymer in Biomedical Applications." Prog. Polym. Sci., 36 981–1014 (2011)

    Article  CAS  Google Scholar 

  8. Ilium, L, "Chitosan and Its Use as a Pharmaceutical Excipient." Pharm. Res., 15 1326–1331 (1998)

    Article  Google Scholar 

  9. Dorozhkin, SV, "Calcium Orthophosphate Coatings on Magnesium and Its Biodegradable Alloys." Acta Biomater., 10 2919–2934 (2014)

    Article  CAS  Google Scholar 

  10. Avcu, E, Baştan, FE, Abdullah, HZ, Rehman, MAU, Avcu, YY, Boccaccini, AR, "Electrophoretic Deposition of Chitosan-Based Composite Coatings for Biomedical Applications: A Review." Prog. Mater. Sci., 103 69–108 (2019)

    Article  CAS  Google Scholar 

  11. Francis, A, Virtanen, S, Turhan, MC, Boccaccini, AR, "Investigating the Effect of Salicylate Salt in Enhancing the Corrosion Resistance of AZ91 Magnesium Alloy for Biomedical Applications." BioNanoMaterials, 17 113–119 (2016)

    Article  Google Scholar 

  12. Wong, HM, Yeung, KWK, Lam, KO, Tam, V, Chu, PK, Luk, KDK, Cheung, KMC, "A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants." Biomaterials, 31 2084–2096 (2010)

    Article  CAS  Google Scholar 

  13. Shen, S, Cai, S, Xu, G, Zhao, H, Niu, S, Zhang, R, "Influence of Heat Treatment on Bond Strength and Corrosion Resistance of Sol–Gel Derived Bioglass–Ceramic Coatings on Magnesium Alloy." J. Mech. Behav. Biomed. Mater., 45 166–174 (2015)

    Article  CAS  Google Scholar 

  14. López, MMM, Fauré, J, Cabrera, MIE, García, MEC, "Structural Characterization and Electrochemical Behavior of 45S5 Bioglass Coating on Ti6Al4V Alloy for Dental Applications." Mater. Sci. Eng. B, 206 30–38 (2016)

    Article  CAS  Google Scholar 

  15. Pishbin, F, Simchi, A, Ryan, MP, Boccaccini,AR, "Electrophoretic Deposition of Chitosan/45S5 Bioglass® Composite Coatings for Orthopaedic Applications." Surf. Coatings Technol., 205 5260–5268 (2011)

    Article  CAS  Google Scholar 

  16. Zhitomirsky, D, Roether, JA, Boccaccini, AR, Zhitomirsky, I, "Electrophoretic Deposition of Bioactive Glass/Polymer Composite Coatings With and Without HA Nanoparticle Inclusions for Biomedical Applications." J. Mater. Process. Technol., 209 1853–1860 (2009)

    Article  CAS  Google Scholar 

  17. Francis, A, Yang, Y, Boccaccini, AR, "A New Strategy for Developing Chitosan Conversion Coating on Magnesium Substrates for Orthopedic Implants." Appl. Surf. Sci. 466 854–862 (2019)

    Article  CAS  Google Scholar 

  18. Saito, N, Usui, Y, Aoki, K, Narita, N, Shimizu, M, Ogiwara, N, Nakamura, K, Ishigaki, N, Kato, H, Taruta, S, Endo, M, "Carbon Nanotubes for Biomaterials in Contact with Bone." Curr. Med. Chem., 15 523–527 (2008)

    Article  CAS  Google Scholar 

  19. Shokrgozar, MA, Mottaghitalab, F, Mottaghitalab, V, Farokhi, M, "Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering." J. Biomed. Nanotechnol., 7 276– 284 (2011)

    Article  CAS  Google Scholar 

  20. Cheng, Q, Rutledge, K, Jabbarzadeh, E, "Carbon Nanotube–Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications." Ann. Biomed. Eng., 41 904–916 (2013)

    Article  Google Scholar 

  21. De Mesquita, JP, Donnici, CL, Pereira, FV, "Biobased Nanocomposites from Layer-by-Layer Assembly of Cellulose Nanowhiskers with Chitosan." Biomacromolecules, 11 473–480 (2010)

    Article  CAS  Google Scholar 

  22. Laredo, E, Grimau, M, Bello, A, Wu, DF, Zhang, YS, Lin, DP, "AC Conductivity of Selectively Located Carbon Nanotubes in Poly(ε-caprolactone)/Polylactide Blend Nanocomposites." Biomacromolecules 11 1339–1347 (2010)

    Article  CAS  Google Scholar 

  23. Im, O, Li, J, Wang, M, Zhang, LG, Keidar, M, "Biomimetic Three-Dimensional Nanocrystalline Hydroxyapatite and Magnetically Synthesized Single-Walled Carbon Nanotube Chitosan Nanocomposite for Bone Regeneration." Int. J. Nanomedicine, 7 2087-2099 (2012)

    CAS  Google Scholar 

  24. Lee, HH, Shin, US, Jin, GZ, Kim, HW, "Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs." Bull. Korean Chem. Soc., 32 157–161 (2011)

    Article  CAS  Google Scholar 

  25. Famá, LM, Pettarin, V, Goyanes, SN, Bernal, CR, "Starch/Multi-Walled Carbon Nanotubes Composites with Improved Mechanical Properties." Carbohydr. Polym., 83 1226–1231 (2011)

    Article  CAS  Google Scholar 

  26. Murugan, N, Sundaramurthy, A, Chen, SM, Sundramoorthy, AK, "Graphene Oxide/Oxidized Carbon Nanofiber/Mineralized Hydroxyapatite Based Hybrid Composite for Biomedical Applications." Mater. Res. Express, 4 124005 (2017)

  27. Chen, L, Hu, J, Shen, X, Tong, H, "Synthesis and Characterization of Chitosan–Multiwalled Carbon Nanotubes/Hydroxyapatite Nanocomposites for Bone Tissue Engineering." J. Mater. Sci. Mater. Med., 24 1843–1851 (2013)

    Article  CAS  Google Scholar 

  28. Harrison, BS, Atala, A, "Carbon Nanotube Applications for Tissue Engineering." Biomaterials, 28 344–353 (2007)

    Article  CAS  Google Scholar 

  29. MacDonald, RA, Laurenzi, BF, Viswanathan, G, Ajayan, PM, Stegemann, JP, "Collagen-Carbon Nanotube Composite Materials as Scaffolds in Tissue Engineering." J. Biomed. Mater. Res. Part A, 74 489–496 (2005)

    Article  CAS  Google Scholar 

  30. Price, RL, Waid, MC, Haberstroh, KM, Webster, TJ, "Selective Bone Cell Adhesion on Formulations Containing Carbon Nanofibers." Biomaterials, 24 1877–1887 (2003)

    Article  CAS  Google Scholar 

  31. Sathiyanarayanan, S, Marikkannu, C, Srinivasan, PB, Muthupandi, V, "Corrosion Behaviour of Ti6Al4V and Duplex Stainless Steel (UNS31803) in Synthetic Bio‐Fluids." Anti-Corrosion Methods Mater., 49 33–37 (2002)

    Article  CAS  Google Scholar 

  32. Santamaria, M, Di Quarto, F, Zanna, S, Marcus, P, "Initial Surface Film on Magnesium Metal: A Characterization by X-ray Photoelectron Spectroscopy (XPS) and Photocurrent Spectroscopy (PCS)." Electrochim. Acta, 53 1314–1324 (2007)

    Article  CAS  Google Scholar 

  33. Feliu, S, Pardo, A, Merino, MC, Coy, AE, Viejo, F, Arrabal, R, "Correlation Between the Surface Chemistry and the Atmospheric Corrosion of AZ31, AZ80 and AZ91D Magnesium Alloys." Appl. Surf. Sci., 255 4102–4108 (2009)

    Article  CAS  Google Scholar 

  34. Li, M, Boggs, M, Beebe, TP, Huang, CP, "Oxidation of Single-Walled Carbon Nanotubes in Dilute Aqueous Solutions by Ozone as Affected by Ultrasound." Carbon, 46 466–475 (2008)

    Article  CAS  Google Scholar 

  35. Wu, L, Zhao, L, Dong, J, Ke, W, Chen, N, "Potentiostatic Conversion of Phosphate Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K2HPO4 Solution." Electrochim. Acta, 145 71–80 (2014)

    Article  CAS  Google Scholar 

  36. Purcell, KG, Jupille, J, King, DA, " Coordination Number and Surface Core-Level Shift Spectroscopy: Stepped Tungsten Surfaces." Surf. Sci., 208 245–266 (1989)

    Article  CAS  Google Scholar 

  37. Egelhoff, WF, "Core-Level Binding-Energy Shifts at Surfaces and in Solids." Surf. Sci. Rep. 6 253–415 (1987)

    Article  Google Scholar 

  38. Fournier, V, Marcus, P, Olefjord, I, "Oxidation of Magnesium." Surf. Interface Anal., 34 494–497 (2002)

    Article  CAS  Google Scholar 

  39. Rouxhet, PG, Genet, MJ, "XPS Analysis of Bio-Organic Systems." Surf. Interface Anal., 43 1453–1470 (2011)

    Article  CAS  Google Scholar 

  40. Hench, LL, Wilson, J, "Surface Active Biomaterials." Science, 208 826–31 (1980)

    Article  CAS  Google Scholar 

  41. Fernández, E, Gil, FJ , Ginebra, MP, Driessens, FCM, Planell, JA, Best, SM, "Calcium Phosphate Bone Cements for Clinical Applications. Part I: Solution Chemistry." J. Mater. Sci. Mater. Med., 10 169–176 (1999)

    Article  Google Scholar 

  42. Bayraktar, D, Tas, AC, "Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37°C in Urea-Containing Synthetic Body Fluids." J. Eur. Ceram. Soc., 19 2573–2579 (1999)

    Article  CAS  Google Scholar 

  43. Chow, LC, Takagi, S, Shern, RJ, Chow, TH, Takagi, KK, Sieck, BA, "Effects on Whole Saliva of Chewing Gums Containing Calcium Phosphates." J. Dent. Res., 73 26–32 (1994)

    Article  CAS  Google Scholar 

  44. Cheng, J, Fernando, KAS, Veca, LM, Sun, YP, Lamond, AI, Lam, YW, Cheng, SH, "Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus." ACS Nano., 2 2085–2094 (2008)

    Article  CAS  Google Scholar 

  45. Petrov, P, Stassin, F, Pagnoulle, C, Jérôme, R, "Noncovalent Functionalization of Multi-Walled Carbon Nanotubes by Pyrene Containing Polymers." Chem. Commun., 2904–2905 (2003). doi:https://doi.org/10.1039/B307751A.

  46. Toita, S, Kang, D, Kobayashi, K, Kawamoto, H, Kojima, K, Tachibana, M, "Atomic Force Microscopic Study on DNA-Wrapping for Different Diameter Single-Wall Carbon Nanotubes." Diam. Relat. Mater., 17 1389–1393 (2008)

    Article  CAS  Google Scholar 

  47. Cheung, W, Pontoriero, F, Taratula, O, Chen, AM, He, H, "DNA and Carbon Nanotubes as Medicine." Adv. Drug Deliv. Rev., 62 633–649 (2010)

    Article  CAS  Google Scholar 

  48. Piovesan, S, Cox, PA, Smith, JR, Fatouros, DG, Roldo, M, "Novel Biocompatible Chitosan Decorated Single-Walled Carbon Nanotubes (SWNTs) for Biomedical Applications: Theoretical and Experimental Investigations." Phys. Chem. Chem. Phys., 12 15636 (2010)

    Article  CAS  Google Scholar 

  49. Panchakarla, LS, Govindaraj, A, "Covalent and Non-Covalent Functionalization and Solubilization of Double-Walled Carbon Nanotubes in Nonpolar and Aqueous Media." J. Chem. Sci., 120 607–611 (2008)

    Article  CAS  Google Scholar 

  50. Varma, A, Deshpande, S, Kennedy, J, "Metal Complexation by Chitosan and Its Derivatives: A Review." Carbohydr. Polym., 55 77–93 (2004)

    Article  CAS  Google Scholar 

  51. Fadeeva, I, Barinov, S, Fedotov, AY, Komlev, V, "Interactions of Calcium Phosphates with Chitosan." Doklady Chemistry, Springer, pp 387-390. (2011)

  52. Nilsen-Nygaard, J, Strand, S, Vårum, K, Draget, K, Nordgård, C, "Chitosan: Gels and Interfacial Properties." Polymers, 7 552–579 (2015)

    Article  CAS  Google Scholar 

  53. Zhou, S, Chen, H, Ding, C, Niu, H, Zhang, T, Wang, N, Zhang, Q, Liu, D, Han, S, Yu, H, "Effectiveness of Crystallitic Carbon from Coal as Milling Aid and for Hydrogen Storage During Milling with Magnesium." Fuel, 109 68–75 (2013)

    Article  CAS  Google Scholar 

  54. Moulton, SE, Minett, AI, Murphy, R, Ryan, KP, McCarthy, D, Coleman, JN, Blau, WJ, Wallace, GG, "Biomolecules as Selective Dispersants for Carbon Nanotubes." Carbon, 43 1879–1884 (2005)

    Article  CAS  Google Scholar 

  55. Spinks, GM, Shin, SR, Wallace, GG, Whitten, PG, Kim, SI, Kim, SJ, "Mechanical Propertes of Chitosan/CNT Microfibers Obtained with Improved Dispersion." Sensors Actuators B Chem., 115 678–684 (2006)

    Article  CAS  Google Scholar 

  56. Chui, VWD, Mok, KW, Ng, CY, Luong, BP, Ma, KK, "Removal and Recovery of Copper(II), Chromium(III), and Nickel(II) from Solutions Using Crude Shrimp Chitin Packed in Small Columns." Environ. Int., 22 463–468 (1996)

    Article  CAS  Google Scholar 

  57. Hon, DNS, Tang, LG, "Chelation of Chitosan Derivatives with Zinc Ions. I. O,N-carboxymethyl Chitosan." J. Appl. Polym. Sci., 77 2246–2253 (2000)

    Article  CAS  Google Scholar 

  58. Rhazi, M, Desbrières, J, Tolaimate, A, Rinaudo, M, Vottero, P, Alagui, A, "Contribution to the Study of the Complexation of Copper by Chitosan and Oligomers." Polymer, 43 1267–1276 (2002)

    Article  CAS  Google Scholar 

  59. Odunola, OA, "Spectroscopic and Magnetic Properties of Zn(II), Cd(II) and Hg(II) Carboxylates." Synth. React. Inorg. Met. Chem., 23 1241–1249 (1993)

    Article  CAS  Google Scholar 

  60. Lau, C, Cooney, MJ, Atanassov, P, "Conductive Macroporous Composite Chitosan−Carbon Nanotube Scaffolds." Langmuir, 24 7004–7010 (2008)

    Article  CAS  Google Scholar 

  61. Lebugle, A, Sallek, B, Tai Tai, A, "Surface Modification of Monetite in Water at 37 °C: Characterisation by XPS." J. Mater. Chem., 9 2511–2515 (1999)

    Article  CAS  Google Scholar 

  62. Sutter, JR, McDowell, H, Brown, WE, "Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation." Inorg. Chem., 10 1638–1643 (1971)

    Article  CAS  Google Scholar 

  63. Pawlak, A, Mucha, M, "Thermogravimetric and FTIR Studies of Chitosan Blends." Thermochim. Acta, 396 153–166 (2003)

    Article  CAS  Google Scholar 

  64. Kweon, H, Um, IC, Park, YH, "Structural and Thermal Characteristics of Antheraea Pernyi Silk Fibroin/Chitosan Blend Film." Polymer, 42 6651–6656 (2001)

    Article  CAS  Google Scholar 

  65. Ahlswede, B, Homann, T, Jug, K, "MSINDO Study of the Adsorption of Water Molecules at Defective MgO(100) Surfaces." Surf. Sci., 445 49–59 (2000)

    Article  CAS  Google Scholar 

  66. Cho, JH, Park, JM, Kim, KS, "Influence of Intermolecular Hydrogen Bonding on Water Dissociation at the MgO(001) Surface." Phys. Rev. B., 62 9981–9984 (2000)

    Article  CAS  Google Scholar 

  67. Labajos, FM, Rives, V, Ulibarri, MA, "Effect of Hydrothermal and Thermal Treatments on the Physicochemical Properties of Mg-Al Hydrotalcite-Like Materials." J. Mater. Sci., 27 1546–1552 (1992)

    Article  CAS  Google Scholar 

  68. Nyquist, RA, Kagel, RO, "Infrared Spectra of Inorganic Compounds (3800-45cm)." Academic Press, New York (1971)

    Google Scholar 

  69. Müller, L, Müller, FA, "Preparation of SBF with Different HCO3 Content and Its Influence on the Composition of Biomimetic Apatites." Acta Biomater., 2 181–189 (2006)

    Article  Google Scholar 

  70. Wen, C, Guan, S, Peng, L, Ren, C, Wang, X, Hu, Z, "Characterization and Degradation Behavior of AZ31 Alloy Surface Modified by Bone-Like Hydroxyapatite for Implant Applications." Appl. Surf. Sci., 255 6433–6438 (2009)

    Article  CAS  Google Scholar 

  71. Murugan, R, Ramakrishna, S, "Bioresorbable Composite Bone Paste Using Polysaccharide Based Nano Hydroxyapatite." Biomaterials, 25 3829–3835 (2004)

    Article  CAS  Google Scholar 

  72. Li, Z, Yubao, L, Aiping, Y, Xuelin, P, Xuejiang, W, Xiang, Z, "Preparation and In Vitro Investigation of Chitosan/Nano-Hydroxyapatite Composite Used as Bone Substitute Materials." J. Mater. Sci. Mater. Med., 16 213–219 (2005)

    Article  CAS  Google Scholar 

  73. Gao, JH, Guan, SK, Chen, J, Wang, LG, Zhu, SJ, Hu, JH, Ren, ZW, "Fabrication and Characterization of Rod-like Nano-Hydroxyapatite on MAO Coating Supported on Mg–Zn–Ca Alloy." Appl. Surf. Sci., 257 2231–2237 (2011)

    Article  CAS  Google Scholar 

  74. Zhang, L, Liu, W, Yue, C, Zhang, T, Li, P, Xing, Z, Chen, Y, "A Tough Graphene Nanosheet/Hydroxyapatite Composite with Improved In Vitro Biocompatibility." Carbon, 61 105–115 (2013)

    Article  CAS  Google Scholar 

  75. Zhang, J, "In Vitro Bioactivity, Degradation Property and Cell Viability of the CaP/Chitosan/Graphene Coating on Magnesium Alloy in m-SBF." Int. J. Electrochem. Sci., 11 9326–9339 (2016)

    Article  CAS  Google Scholar 

  76. Rath, PC, Singh, BP, Besra, L, Bhattacharjee, S, "Multiwalled Carbon Nanotubes Reinforced Hydroxyapatite-Chitosan Composite Coating on Ti Metal: Corrosion and Mechanical Properties." J. Am. Ceram. Soc., 95 2725–2731 (2012)

    Article  CAS  Google Scholar 

  77. Shi, YY, Li, M, Liu, Q, Jia, ZJ, Xu, XC, Cheng, Y, Zheng, YF, "Electrophoretic Deposition of Graphene Oxide Reinforced Chitosan–Hydroxyapatite Nanocomposite Coatings on Ti Substrate." J. Mater. Sci. Mater. Med., 27 48-60 (2016)

    Article  CAS  Google Scholar 

  78. Shimizu, M, Kobayashi, Y, Mizoguchi, T, Nakamura, H, Kawahara, I, Narita, N, Usui, Y, Aoki, K, Hara, K, Haniu, H, Ogihara, N, Ishigaki, N, Nakamura, K, Kato, H, Kawakubo, M, Dohi, Y, Taruta, S, Kim, YA, Endo, M, Ozawa, H, Udagawa, N, Takahashi, N, Saito, N, "Carbon Nanotubes Induce Bone Calcification by Bidirectional Inteaction with Osteoblasts." Adv. Mater., 24 2176–2185 (2012)

    Article  CAS  Google Scholar 

  79. Isobe, H, Tanaka, T, Maeda, R, Noiri, E, Solin, N, Yudasaka, M, Iijima, S, Nakamura, E, "Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-Soluble, Transition-Metal-Free Carbon Nanotube Aggregates." Angew. Chem. Int. Ed., 45 6676–6680 (2006)

    Article  CAS  Google Scholar 

  80. Hanawa, T, Ota, M, "Characterization of Surface Film Formed on Titanium in Electrolyte Using XPS." Appl. Surf. Sci., 55 269–276 (1992)

    Article  CAS  Google Scholar 

  81. Li, P, Ohtsuki, C, Kokubo, T, Nakanishi, K, Soga, N, De Groot, K, "The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants." J. Biomed. Mater. Res., 28 7–15 (1994)

    Article  CAS  Google Scholar 

  82. Hahn, BD, Park, DS, Choi, JJ, Ryu, J, Yoon, WH, Choi, JH, Kim, HE, Kim, SG, "Aerosol Deposition of Hydroxyapatite–Chitosan Composite Coatings on Biodegradable Magnesium Alloy." Surf. Coatings Technol., 205 3112–3118 (2011)

    Article  CAS  Google Scholar 

  83. Dehghanian, C, Aboudzadeh, N, Shokrgozar, MA, "Characterization of Silicon-Substituted Nano Hydroxyapatite Coating on Magnesium Alloy for Biomaterial Application." Mater. Chem. Phys., 203 27–33 (2018)

    Article  CAS  Google Scholar 

  84. Dunne, CF, Levy, GK, Hakimi, O, Aghion, E, Twomey, B, Stanton, KT, "Corrosion Behaviour of Biodegradable Magnesium Alloys with Hydroxyapatite Coatings." Surf. Coatings Technol., 289 37–44 (2016)

    Article  CAS  Google Scholar 

  85. Jayaraj, J, Amruth Raj, S, Srinivasan, A, Ananthakumar, S, Pillai, UTS, Dhaipule, NGK, Mudali, UK, "Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy." Corros. Sci., 113 104–115 (2016)

    Article  CAS  Google Scholar 

  86. Wen, C, Zhan, X, Huang, X, Xu, F, Luo, L, Xia, C, "Characterization and Corrosion Properties of Hydroxyapatite/Graphene Oxide Bio-composite Coating on Magnesium Alloy by One-step Micro-Arc Oxidation Method." Surf. Coatings Technol., 317 125–133 (2017)

    Article  CAS  Google Scholar 

  87. Bai, K, Zhang, Y, Fu, Z, Zhang, C, Cui, X, Meng, E, Guan, S, Hu, J, "Fabrication of Chitosan/Magnesium Phosphate Composite Coating and the In Vitro Degradation Properties of Coated Magnesium Alloy." Mater. Lett., 73 59–61 (2012)

    Article  CAS  Google Scholar 

  88. Kannan, MB, Walter, R, Yamamoto, A, "Biocompatibility and in Vitro Degradation Behavior of Magnesium–Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte." ACS Biomater. Sci. Eng., 2 56–64 (2016)

    Article  CAS  Google Scholar 

  89. Bakhsheshi-Rad, HR, Hamzah, E, Kasiri-Asgarani, M, Jabbarzare, S, Iqbal, N, Abdul Kadir, MR, "Deposition of Nanostructured Fluorine-Doped Hydroxyapatite–Polycaprolactone Duplex Coating to Enhance the Mechanical Properties and Corrosion Resistance of Mg Alloy for Biomedical Applications." Mater. Sci. Eng. C, 60 526–537. (2016)

    Article  CAS  Google Scholar 

  90. Zeng, RC, Cui, L, Jiang, K, Liu, R, Zhao, BD, Zheng YF, "In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants." ACS Appl. Mater. Interfaces, 8 10014–10028 (2016)

    Article  CAS  Google Scholar 

  91. Yu, C, Cui, LY, Zhou, YF, Han, ZZ, Chen, XB, Zeng, RC, Zou, YH, Li, SQ, Zhang, F, Han, EH, Guan, SK, "Self-Degradation of Micro-arc Oxidation/Chitosan Composite Coating on Mg-4Li-1Ca Alloy." Surf. Coatings Technol., 344 1–11 (2018)

    Article  CAS  Google Scholar 

  92. Pan, J, Liao, H, Leygraf, C, Thierry, D, Li, J, "Variation of Oxide Films on Titanium Induced by Osteoblast-Like Cell Culture and the Influence of an H2O2 Pretreatment." J. Biomed. Mater. Res., 40 244–256 (1998)

    Article  CAS  Google Scholar 

  93. Raju, GG, Dielectrics in Electric Fields: Tables, Atoms, and Molecules. 2nd Edition. CRC Press, Taylor and Francis Group, 776 pages. (2016)

  94. Francis, A, "Progress in Polymer-Derived Functional Silicon-Based Ceramic Composites for Biomedical and Engineering Applications." Mater. Res. Express, 5 062003 (2018)

    Article  CAS  Google Scholar 

  95. Rogero, SO, Sousa, JS, Alário, D, Lopérgolo, L, Lugão, AB, "Silicone Crosslinked by Ionizing Radiation as Potential Polymeric Matrix for Drug Delivery." Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 236 521–525 (2005)

  96. Francis, A, Detsch, R, Boccaccini, AR, "Fabrication and Cytotoxicity Assessment of Novel Polysiloxane/Bioactive Glass Films for Biomedical Applications." Ceram. Int., 42 15442–15448 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Francis gratefully acknowledges the support of Prof. Dr. A.R. Boccaccini (Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg) and Prof. Dr. S. Virtanen (Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg). The authors thank chemist R. El-Saied and M. Sobhi for carrying out XPS analyses and SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Francis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, A.A., Abdel-Gawad, S.A. & Shoeib, M.A. Toward CNT-reinforced chitosan-based ceramic composite coatings on biodegradable magnesium for surgical implants. J Coat Technol Res 18, 971–988 (2021). https://doi.org/10.1007/s11998-021-00468-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00468-y

Keywords

Navigation