Skip to main content

Ambient temperature and UV-cured hybrid coatings from acetoacetylated non-isocyanate polyurethanes

Abstract

Preparation of ambient and UV curing non-isocyanate polyurethane (NIPU) coatings has been reported using a series of acetoacetylated non-isocyanate polyurethane (AA-NI-PUPO) oligomers. Synthesized oligomers were characterized using various techniques such as Fourier transform infrared and nuclear magnetic resonance spectroscopy. AA-NI-PUPOs showed significantly lower viscosity compared to their non-acetoacetylated counterparts. Ambient temperature-cured systems were formulated by mixing AA-NI-PUPOs and different primary amine compounds in stoichiometric proportions. Michael addition reaction of acrylates and AA-NI-PUPOs was initiated by UV curing using a photobase generator as the catalyst. NIPU coatings were studied for various thermo-mechanical properties and corrosion resistance. The selected UV-cured and ambient-cured samples showed instant and 1-h tack-free time, respectively. Results revealed that with proper selection of acetoacetylated resin and crosslinker type, coatings with properties comparable to conventional PU coatings could be formulated. Moreover, UV-curable coatings with up to 90 wt% solid could be formulated using conventional monomeric acrylates as a reactive diluent. The study demonstrates the feasibility of formulating solvent-free rapid ambient curing non-isocyanate polyurethane coatings.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Huang, S, Liu, G, Zhang, K, Hu, H, Wang, J, Miao, L, Tabrizizadeh, T, “Water-Based Polyurethane Formulations for Robust Superhydrophobic Fabrics.” Chem. Eng. J., 360 445–451 (2019). https://doi.org/10.1016/j.cej.2018.11.220

    CAS  Article  Google Scholar 

  2. Lambourne, R, Strivens, TA, Paint and Surface Coatings: Theory and Practice. Woodhead Publishing, Cambridge (1999)

    Book  Google Scholar 

  3. Rossi, G, Fuchs, PFJ, Barnoud, J, Monticelli, L, “A Coarse-Grained MARTINI Model of Polyethylene Glycol and of Polyoxyethylene Alkyl Ether Surfactants.” J. Phys. Chem. B., 116 14353–14362 (2012). https://doi.org/10.1021/jp3095165

    CAS  Article  Google Scholar 

  4. Hirayama, T, Urban, MW, “Distribution of Melamine in Melamine/Polyester Coatings: FT-IR Spectroscopic Studies.” Prog. Org. Coat., 20 81–96 (1992). https://doi.org/10.1016/0033-0655(92)85006-H

    CAS  Article  Google Scholar 

  5. Kong, X, Liu, G, Curtis, JM, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Polym. J., 48 2097–2106 (2012). https://doi.org/10.1016/j.eurpolymj.2012.08.012

    CAS  Article  Google Scholar 

  6. Greunz, T, Lowe, C, Bradt, E, Hild, S, Strauß, B, Stifter, D, “A Study on the Depth Distribution of Melamine in Polyester-Melamine Clear Coats.” Prog. Org. Coat., 115 130–137 (2018). https://doi.org/10.1016/j.porgcoat.2017.11.014

    CAS  Article  Google Scholar 

  7. Nelson, TJ, Masaki, B, Morseth, Z, Webster, DC, “Highly Functional Biobased Polyols and Their Use in Melamine–Formaldehyde Coatings.” J. Coat. Technol. Res., 10 757–767 (2013). https://doi.org/10.1007/s11998-013-9524-0

    CAS  Article  Google Scholar 

  8. Zamani, E, Yahyaei, H, Khosravi, A, Mohseni, M, Shaki, H, “Synthesis and Characterization of a Novel Self-colored Fluorescent Polycarbonate Urethane Based on the 1,8-Naphthalimide Group.” J. Macromol. Sci. Part B, 58 772–781 (2019). https://doi.org/10.1080/00222348.2019.1635726

    CAS  Article  Google Scholar 

  9. Mahmudzadeh, M, Yari, H, Ramezanzadeh, B, Mahdavian, M, “Urtica Dioica Extract as a Facile Green Reductant of Graphene Oxide for UV Resistant and Corrosion Protective Polyurethane Coating Fabrication.” J. Ind. Eng. Chem., 78 125–136 (2019). https://doi.org/10.1016/j.jiec.2019.06.026

    CAS  Article  Google Scholar 

  10. Wexler, P, Anderson, BD, Encyclopedia of Toxicology. Elsevier Science Direct, Amsterdam (2005)

    Google Scholar 

  11. Wang, P, Liu, S, Deng, Y, “Important Green Chemistry and Catalysis: Non-phosgene Syntheses of Isocyanates-Thermal Cracking Way.” Chin. J. Chem., 35 821–835 (2017). https://doi.org/10.1002/cjoc.201600745

    CAS  Article  Google Scholar 

  12. Zhu, HD, Kneisel, AR, Mahdi, SZ, Saracsan, JW, “Low Volatile Isocyanate Monomer Containing Polyurethane Prepolymer and Adhesive System,” WO2006042305A1, 2006. https://patents.google.com/patent/WO2006042305A1/en.

  13. OSHA Announces New National Emphasis Program for Occupational Exposure to Isocyanates | Occupational Safety and Health Administration. https://www.osha.gov/news/newsreleases/trade/06252013.

  14. Deepa, P, Jayakannan, M, “Solvent-Free and Nonisocyanate Melt Transurethane Reaction for Aliphatic Polyurethanes and Mechanistic Aspects.” J. Polym. Sci. Part Polym. Chem., 46 2445–2458 (2008). https://doi.org/10.1002/pola.22578

    CAS  Article  Google Scholar 

  15. Kušan, J, Keul, H, Höcker, H, “Cationic Ring-Opening Polymerization of Tetramethylene Urethane.” Macromolecules, 34 389–395 (2001). https://doi.org/10.1021/ma000535c

    CAS  Article  Google Scholar 

  16. Kathalewar, MS, Joshi, PB, Sabnis, AS, Malshe, VC, “Non-isocyanate Polyurethanes: from Chemistry to Applications.” RSC Adv., 3 4110–4129 (2013). https://doi.org/10.1039/C2RA21938G

    CAS  Article  Google Scholar 

  17. Figovsky, O, Leykin, A, “Synthesis and Application of Nonisocyanate Polyurethanes.” Chem. Chem. Technol., 10 553–559 (2016). https://doi.org/10.23939/chcht10.04si.553

    CAS  Article  Google Scholar 

  18. Rokicki, G, Parzuchowski, PG, Mazurek, M, “Non-isocyanate Polyurethanes: Synthesis, Properties, and Applications.” Polym. Adv. Technol., 26 707–761 (2015). https://doi.org/10.1002/pat.3522

    CAS  Article  Google Scholar 

  19. Blattmann, H, Fleischer, M, Bähr, M, Mülhaupt, R, “Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide.” Macromol. Rapid Commun., 35 1238–1254 (2014). https://doi.org/10.1002/marc.201400209

    CAS  Article  Google Scholar 

  20. Ghasemlou, M, Daver, F, Ivanova, EP, Adhikari, B, “Bio-based Routes to Synthesize Cyclic Carbonates and Polyamines Precursors of Non-Isocyanate Polyurethanes: A Review.” Eur. Polym. J., 118 668–684 (2019). https://doi.org/10.1016/j.eurpolymj.2019.06.032

    CAS  Article  Google Scholar 

  21. Yu, AZ, Setien, RA, Sahouani, JM, Docken, J, Webster, DC, “Catalyzed Non-isocyanate Polyurethane (NIPU) Coatings from Bio-based Poly(cyclic carbonates).” J. Coat. Technol. Res., 16 41–57 (2019). https://doi.org/10.1007/s11998-018-0135-7

    CAS  Article  Google Scholar 

  22. Wu, Z, Tang, L, Dai, J, Qu, J, “Synthesis and Properties of Fluorinated Non-isocyanate Polyurethanes Coatings with Good Hydrophobic and Oleophobic Properties.” J. Coat. Technol. Res., 16 1233–1241 (2019). https://doi.org/10.1007/s11998-019-00195-5

    CAS  Article  Google Scholar 

  23. Aoyagi, N, Furusho, Y, Endo, T, “Effective Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides by Phosphonium Iodides as Catalysts in Alcoholic Solvents.” Tetrahedron. Lett., 54 7031–7034 (2013). https://doi.org/10.1016/j.tetlet.2013.10.068

    CAS  Article  Google Scholar 

  24. Wu, Y, Song, X, Li, S, Zhang, J, Yang, X, Shen, P, Gao, L, Wei, R, Zhang, J, Xiao, G, “3D-Monoclinic M-BTC MOF (M = Mn Co, Ni) as Highly Efficient Catalysts for Chemical Fixation of CO2 into Cyclic Carbonates.” J. Ind. Eng. Chem., 58 296–303 (2018). https://doi.org/10.1016/j.jiec.2017.09.040

    CAS  Article  Google Scholar 

  25. Figovsky, OL, Shapovalov, L, Leykin, A, Birukova, O, Potashnikova, R, “Progress in Elaboration of Nonisocyanate Polyurethanes Based on Cyclic Carbonates.” Int. Lett. Chem. Phys. Astron., 3 52–66 (2013). https://doi.org/10.18052/www.scipress.com/ILCPA.3.52

    Article  Google Scholar 

  26. Wazarkar, K, Kathalewar, M, Sabnis, A, “Development of Epoxy-Urethane Hybrid Coatings Via Non-isocyanate Route.” Eur. Polym. J., 84 812–827 (2016). https://doi.org/10.1016/j.eurpolymj.2016.10.021

    CAS  Article  Google Scholar 

  27. Byczyński, Ł, Dutkiewicz, M, Maciejewski, H, “Synthesis and Properties of High-solids Hybrid Materials Obtained from Epoxy Functional Urethanes and Siloxanes.” Prog. Org. Coat., 84 59–69 (2015). https://doi.org/10.1016/j.porgcoat.2015.02.017

    CAS  Article  Google Scholar 

  28. Kathalewar, M, Sabnis, A, “Preparation of Novel CNSL-Based Urethane Polyol Via Nonisocyanate Route: Curing with Melamine-Formaldehyde Resin and Structure-Property Relationship,” J. Appl. Polym. Sci., 132 (2015) n/a-n/a. https://doi.org/10.1002/app.41391.

  29. Ecochard, Y, Leroux, J, Boutevin, B, Auvergne, R, Caillol, S, “From Multi-functional Siloxane-Based Cyclic Carbonates to Hybrid Polyhydroxyurethane Thermosets.” Eur. Polym. J., 120 109280 (2019). https://doi.org/10.1016/j.eurpolymj.2019.109280

    CAS  Article  Google Scholar 

  30. Asemani, H, Zareanshahraki, F, Mannari, V, “Design of Hybrid Nonisocyanate Polyurethane Coatings for Advanced Ambient Temperature Curing Applications.” J. Appl. Polym. Sci., 136 47266 (2019). https://doi.org/10.1002/app.47266

    CAS  Article  Google Scholar 

  31. Zareanshahraki, F, Asemani, HR, Skuza, J, Mannari, V, “Synthesis of Non-isocyanate Polyurethanes and Their Application in Radiation-Curable Aerospace Coatings.” Prog. Org. Coat., 138 105394 (2020). https://doi.org/10.1016/j.porgcoat.2019.105394

    CAS  Article  Google Scholar 

  32. Asemani, HR, Mannari, V, “Synthesis and Evaluation of Non-isocyanate Polyurethane Polyols for Heat-cured Thermoset Coatings.” Prog. Org. Coat., 131 247–258 (2019). https://doi.org/10.1016/j.porgcoat.2019.02.036

    CAS  Article  Google Scholar 

  33. Chattopadhyay, DK, Raju, KVSN, “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32 352–418 (2007). https://doi.org/10.1016/j.progpolymsci.2006.05.003

    CAS  Article  Google Scholar 

  34. Noomen, A, “Applications of Michael Addition Chemistry in Coatings Technology.” Prog. Org. Coat., 32 137–142 (1997). https://doi.org/10.1016/S0300-9440(97)00070-2

    CAS  Article  Google Scholar 

  35. Kuo, T, Grosso, PV, Spilman, GE, Clark, MD, “Fast-dry, High Solids Coating Compositions Based on Acetoacetate-Functionalized Alkyd Resins,” US6794049B2, 2004. https://patents.google.com/patent/US6794049/en.

  36. Narayan, R, Chattopadhyay, DK, Sreedhar, B, Raju, KVSN, “Cure, Viscoelastic and Mechanical Properties of Hydroxylated Polyester Melamine High Solids Coatings.” J. Mater. Sci., 37 4911–4918 (2002). https://doi.org/10.1023/A:1020834818562

    CAS  Article  Google Scholar 

  37. Narayan, R, Raju, KVSN, “Properties of Acetoacetylated Hydroxylated Polyesters Based Polyurethane Coatings.” Prog. Org. Coat., 45 59–67 (2002). https://doi.org/10.1016/S0300-9440(02)00116-9

    CAS  Article  Google Scholar 

  38. Paramarta, A, Webster, DC, “The Exploration of Michael-Addition Reaction Chemistry to Create High Performance, Ambient Cure Thermoset Coatings Based on Soybean Oil.” Prog. Org. Coat., 108 59–67 (2017). https://doi.org/10.1016/j.porgcoat.2017.04.004

    CAS  Article  Google Scholar 

  39. Mohajeri, S, Burke, NAD, Stöver, HDH, “The Stability of Enamine Crosslinks Formed from Acetoacetate/Amine in Synthetic Hydrogels.” Polym. Degrad. Stab., 114 94–104 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.01.027

    CAS  Article  Google Scholar 

  40. Manchanda, H, Mannari, V, “Super Photo-base Initiated Organic–Inorganic Hybrid Coatings by Plural-cure Mechanisms.” Prog. Org. Coat., 127 222–230 (2019). https://doi.org/10.1016/j.porgcoat.2018.11.011

    CAS  Article  Google Scholar 

  41. Pilehkouhi, M, Shaki, H, Khosravi, A, Khorasani, M, Zamani, E, “Synthesis and Characterization of a Fluorescent Water-Borne Polyurethane Based on a Novel Naphthalimide Dye.” J. Macromol. Sci. Part B., 57 151–167 (2018). https://doi.org/10.1080/00222348.2018.1435501

    CAS  Article  Google Scholar 

  42. Krall, EM, Serum, EM, Sibi, MP, Webster, DC, “Catalyst-free Lignin Valorization by Acetoacetylation. Structural Elucidation by Comparison with Model Compounds.” Green Chem., 20 2959–2966 (2018). https://doi.org/10.1039/C8GC01071D

    CAS  Article  Google Scholar 

  43. Cao, Z, Gao, F, Zhao, J, Wei, X, Cheng, Q, Zhong, J, Lin, C, Shu, J, Fu, C, Shen, L, “Bio-based Coating Materials Derived from Acetoacetylated Soybean Oil and Aromatic Dicarboxaldehydes.” Polymers, 11 1809 (2019). https://doi.org/10.3390/polym11111809

    CAS  Article  Google Scholar 

  44. Tucker, HA, “Fast-curing, High Strength, Two-Part Sealants Using Acetoacetate-Amine Cure Chemistry,” EP0603716A1, 1994. https://patents.google.com/patent/EP0603716A1/en.

  45. Eastman t-BAA (Tertiary-Butyl acetoacetate) for the Synthesis of Acetoacetyl-Functional Resins. https://www.eastman.com/Literature_Center/N/N328.pdf.

  46. Konuray, AO, Ruiz, A, Morancho, JM, Salla, JM, Fernández-Francos, X, Serra, À, Ramis, X, “Sequential Dual Curing by Selective Michael Addition and Free Radical Polymerization of Acetoacetate-Acrylate-Methacrylate Mixtures.” Eur. Polym. J., 98 39–46 (2018). https://doi.org/10.1016/j.eurpolymj.2017.11.003

    CAS  Article  Google Scholar 

  47. Urdl, K, Kandelbauer, A, Kern, W, Müller, U, Thebault, M, Zikulnig-Rusch, E, “Self-healing of Densely Crosslinked Thermoset Polymers—A Critical Review.” Prog. Org. Coat., 104 232–249 (2017). https://doi.org/10.1016/j.porgcoat.2016.11.010

    CAS  Article  Google Scholar 

  48. Asemani, HR, Sarabi, AA, Eivaz Mohammadloo, H, Sarayloo, M, “Electrochemical and Morphological Properties of Zirconium Conversion Coating in the Presence of Nickel Ions on Galvanized Steel.” J. Coat. Technol. Res., 13 883–894 (2016). https://doi.org/10.1007/s11998-016-9800-x

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge financial support from the federal agency—strategic environmental research and development program (SERDP), USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mannari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asemani, H.R., Mannari, V. Ambient temperature and UV-cured hybrid coatings from acetoacetylated non-isocyanate polyurethanes. J Coat Technol Res 18, 469–488 (2021). https://doi.org/10.1007/s11998-020-00425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00425-1

Keywords

  • Hybrid coating
  • Non-isocyanate polyurethane
  • Acetoacetate
  • Michael addition
  • Ambient curing
  • UV curing