Skip to main content

Phthalocyanine functionalized poly(vinyl alcohol)s via CuAAC click chemistry and their antibacterial properties

Abstract

In this article, the new zinc phthalocyanine (ZnPc)-based poly(vinyl alcohol)s (PVA-Pcs) are synthesized by copper(I)-catalyzed azide-alkyne cycloaddition click reaction (CuAAC) between azide side chain functionalized PVA (PVA-N3) and alkyne substituted ZnPc (Pc-Al), and characterized. The structure of PVA-Pcs and their intermediates are determined by a combination of Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopies. On the other hand, the effect of Pc-Al loading by mole (PVA-N3:Pc-Al = 10:1 and 10:2) on the wettability, thermal and antibacterial properties of achieved final products is investigated, utilizing water contact angle (WCA) measurements, thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses, and antibacterial activity tests, respectively. Based on the WCA, TGA, and DSC analyses of PVA-Pcs, it is found that utilizing a higher loading of Pc-Al in the CuAAC reaction medium enhances the WCA and thermal properties of resulted products. Furthermore, the antibacterial activity tests against both Gram negative bacteria (Escherichia coli and Salmonella typhimurium) and Gram positive bacteria (Staphylococcus aureus and Listeria monocytogenes) revealed the higher inhibition effect of PVA-Pcs compared to neat PVA, some prevalent antibiotics and control samples. Thus, PVA-Pcs are promising materials that can be used in different application areas requiring lower wettability and higher thermal and antibacterial properties.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Chen, A, Peng, H, Blakey, I, Whittaker, AK, “Biocidal Polymers: A Mechanistic Overview.” Polym. Rev., 57 276–310 (2017)

    CAS  Google Scholar 

  2. Acik, G, Altinkok, C, Olmez, H, Tasdelen, MA, “Antibacterial Film from Chlorinated Polypropylene via CuAAC Click Chemistry.” Prog. Org. Coat., 125 73–78 (2018)

    CAS  Google Scholar 

  3. Liu, R, Chen, X, Falk, SP, Mowery, BP, Karlsson, AJ, Weisblum, B, Palecek, SP, Masters, KS, Gellman, SH, “Structure–Activity Relationships Among Antifungal Nylon-3 Polymers: Identification of Materials Active Against Drug-Resistant Strains of Candida albicans.” J. Am. Chem. Soc., 136 4333–4342 (2014)

    CAS  Google Scholar 

  4. Stratton, TR, Applegate, BM, Youngblood, JP, “Effect of Steric Hindrance on the Properties of Antibacterial and Biocompatible Copolymers.” Biomacromolecules, 12 50–56 (2010)

    Google Scholar 

  5. Onyari, JM, Huang, SJ, “Synthesis and Properties of Novel Polyvinyl Alcohol–Lactic Acid Gels.” J. Appl. Polym. Sci., 113 2053–2061 (2009)

    CAS  Google Scholar 

  6. Kim, JO, Park, JK, Kim, JH, Jin, SG, Yong, CS, Li, DX, Choi, JY, Woo, JS, Yoo, BK, Lyoo, WS, “Development of Polyvinyl Alcohol–Sodium Alginate Gel-Matrix-Based Wound Dressing System Containing Nitrofurazone.” Int. J. Pharm., 359 79–86 (2008)

    CAS  Google Scholar 

  7. Açik, G, Kamaci, M, Özata, B, Cansoy, CEÖ, “Effect of Polyvinyl Alcohol/Chitosan Blend Ratios on Morphological, Optical, and Thermal Properties of Electrospun Nanofibers.” Turk. J. Chem., 43 137–149 (2019)

    Google Scholar 

  8. Arslan, M, Acik, G, Tasdelen, MA, “The Emerging Applications of Click Chemistry Reactions in Modification of Industrial Polymers.” Polym. Chem., 10 3806–38021 (2019)

    CAS  Google Scholar 

  9. Acik, G, “Soybean Oil Modified Bio-based Poly(vinyl alcohol)s via Ring-Opening Polymerization.” J. Polym. Environ., 27 2618–2623 (2019)

    CAS  Google Scholar 

  10. Carlotti, SJ, Giani-Beaune, O, Schué, F, “Characterization and Mechanical Properties of Water-Soluble Poly(vinyl alcohol) Grafted with Lactic Acid and Glycolic Acid.” J. Appl. Polym. Sci., 80 142–147 (2001)

    CAS  Google Scholar 

  11. Acik, G, Karatavuk, AO, “Synthesis, Properties and Biodegradability of Cross-linked Amphiphilic Poly(vinyl acrylate)-Poly(tert-butyl acrylate)s by Photo-initiated Radical Polymerization.” Eur. Polym. J., 127 109602 (2020)

    CAS  Google Scholar 

  12. Acik, G, Altinkok, C, Tasdelen, MA, “Synthesis and Characterization of Polypropylene-graft-poly(l-lactide) Copolymers by CuAAC Click Chemistry.” J. Polym. Sci. Part A Polym. Chem., 56 2595–2601 (2018)

    CAS  Google Scholar 

  13. Acik, G, Cansoy, CE, Tasdelen, M, “Synthesis of Fluorinated Polypropylene Using CuAAC Click Chemistry.” J. Appl. Polym. Sci., 136 47072 (2019)

    Google Scholar 

  14. Bicak, TC, Gicevičius, M, Gokoglan, TC, Yilmaz, G, Ramanavicius, A, Toppare, L, Yagci, Y, “Simultaneous and Sequential Synthesis of Polyaniline-g-poly(ethylene glycol) by Combination of Oxidative Polymerization and CuAAC Click Chemistry: A Water-Soluble Instant Response Glucose Biosensor Material.” Macromolecules, 50 1824–1831 (2017)

    CAS  Google Scholar 

  15. Acik, G, Sey, E, Tasdelen, M, “Polypropylene-Based Graft Copolymers via CuAAC Click Chemistry.” eXPRESS Polym. Lett., 12 418–428 (2018)

    CAS  Google Scholar 

  16. Uysal, N, Acik, G, Tasdelen, MA, “Soybean Oil Based Thermoset Networks via Photoinduced CuAAC Click Chemistry.” Polym. Int., 66 999–1004 (2017)

    CAS  Google Scholar 

  17. Roy, A, Valderrama, MAM, Daujat, V, Ferji, K, Léonard, M, Durand, A, Babin, J, Six, J-L, “Stability of a Biodegradable Microcarrier Surface: Physically Adsorbed Versus Chemically Linked Shells.” J. Mater. Chem. B, 6 5130–5143 (2018)

    CAS  Google Scholar 

  18. Altintas, O, Speros, JC, Bates, FS, Hillmyer, MA, “Straightforward Synthesis of Model Polystyrene-block-poly(vinyl alcohol) Diblock Polymers.” Polym. Chem., 9 4243–4250 (2018)

    CAS  Google Scholar 

  19. Ossipov, DA, Hilborn, J, “Poly(vinyl alcohol)-Based Hydrogels Formed by “Click Chemistry”.” Macromolecules, 39 1709–1718 (2006)

    CAS  Google Scholar 

  20. Boase, NR, Smith, ST, Masters, K-S, Hosokawa, K, Crowe, SB, Trapp, JV, “Xylenol Orange Functionalised Polymers to Overcome Diffusion in Fricke Gel Radiation Dosimeters.” React. Funct. Polym., 132 81–88 (2018)

    CAS  Google Scholar 

  21. Chen, W, Achazi, K, Schade, B, Haag, R, “Charge-Conversional and Reduction-Sensitive Poly(vinyl alcohol) Nanogels for Enhanced Cell Uptake and Efficient Intracellular Doxorubicin Release.” J. Control. Release, 205 15–24 (2015)

    CAS  Google Scholar 

  22. Ikeda, T, Tazuke, S, “Biologically Active Polycations: Antimicrobial Activities of Poly[trialkyl(vinylbenzyl)ammonium chloride]-Type Polycations.” Die Makromolekulare Chemie Rapid Commun., 4 459–461 (1983)

    CAS  Google Scholar 

  23. Tiller, JC, Lee, SB, Lewis, K, Klibanov, AM, “Polymer Surfaces Derivatized with Poly(vinyl-N-hexylpyridinium) Kill Airborne and Waterborne Bacteria.” Biotechnol. Bioeng., 79 465–471 (2002)

    CAS  Google Scholar 

  24. Nonaka, T, Noda, E, Kurihara, S, “Graft Copolymerization of Vinyl Monomers Bearing Positive Charges or Episulfide Groups onto Loofah Fibers and Their Antibacterial Activity.” J. Appl. Polym. Sci., 77 1077–1086 (2000)

    CAS  Google Scholar 

  25. Yang, W, Owczarek, J, Fortunati, E, Kozanecki, M, Mazzaglia, A, Balestra, G, Kenny, J, Torre, L, Puglia, D, “Antioxidant and Antibacterial Lignin Nanoparticles in Polyvinyl Alcohol/Chitosan Films for Active Packaging.” Ind. Crops Prod., 94 800–811 (2016)

    CAS  Google Scholar 

  26. Lai, Q, Quadir, MZ, Aguey-Zinsou, K-F, “LiBH4 Electronic Destabilization with Nickel(II) Phthalocyanine—Leading to a Reversible Hydrogen Storage System.” ACS Appl. Energy Mater., 1 6824–6832 (2018)

    CAS  Google Scholar 

  27. Guo, C, Ran, J, Vasileff, A, Qiao, S-Z, “Rational Design of Electrocatalysts and Photo(electro)catalysts for Nitrogen Reduction to Ammonia (NH3) Under Ambient Conditions.” Energy Environ. Sci., 11 45–56 (2018)

    CAS  Google Scholar 

  28. Li, X, Lee, D, Huang, JD, Yoon, J, “Phthalocyanine-Assembled Nanodots as Photosensitizers for Highly Efficient Type I Photoreactions in Photodynamic Therapy.” Angew. Chem., 130 10033–10038 (2018)

    Google Scholar 

  29. Köksoy, B, Orman, EB, Kuruca, H, Bulut, M, Durmuş, M, Özkaya, AR, “Mono and Double-Decker Lutetium Phthalocyanines Bearing Iodine Groups: Electrochemical and Electrochromic Properties.” J. Electrochem. Soc., 163 H927–H936 (2016)

    Google Scholar 

  30. Basova, TV, Mikhaleva, NS, Hassan, AK, Kiselev, VG, “Thin Films of Fluorinated 3d-Metal Phthalocyanines as Chemical Sensors of Ammonia: An Optical Spectroscopy Study.” Sens. Actuators B Chem., 227 634–642 (2016)

    CAS  Google Scholar 

  31. Kantar, GK, Menteşe, E, Beriş, FŞ, Şaşmaz, S, Kahveci, B, “Synthesis and Antimicrobial Activity of Some New Triazole Bridged Benzimidazole Substituted Phthalonitrile and Phthalocyanines.” Rev. Roum. Chim., 63 59–65 (2018)

    Google Scholar 

  32. Cid, JJ, García-Iglesias, M, Yum, JH, Forneli, A, Albero, J, Martínez-Ferrero, E, Vazquez, P, Grätzel, M, Nazeeruddin, MK, Palomares, E, “Structure–Function Relationships in Unsymmetrical Zinc Phthalocyanines for Dye-Sensitized Solar Cells.” Chem. Eur. J., 15 5130–5137 (2009)

    CAS  Google Scholar 

  33. de la Torre, G, Blau, W, Torres, T, “A Survey on the Functionalization of Single-Walled Nanotubes. The Chemical Attachment of Phthalocyanine Moieties.” Nanotechnology, 14 765 (2003)

    Google Scholar 

  34. Chen, X, Salmon, I, Thaddeus, R, McGrath, DV, “Asymmetric Phthalocyanine Synthesis by ROMP-Capture-Release.” Org. Lett., 11 2061–2064 (2009)

    CAS  Google Scholar 

  35. Hammer, RP, Owens, CV, Hwang, S-H, Sayes, CM, Soper, SA, “Asymmetrical, Water-Soluble Phthalocyanine Dyes for Covalent Labeling of Oligonucleotides.” Bioconj. Chem., 13 1244–1252 (2002)

    CAS  Google Scholar 

  36. Campidelli, S, Ballesteros, B, Filoramo, A, Da Díaz, D, de la Torre, G, Torres, T, Rahman, GA, Ehli, C, Kiessling, D, Werner, F, “Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via “Click Chemistry”.” J. Am. Chem. Soc., 130 11503–11509 (2008)

    CAS  Google Scholar 

  37. Bottari, G, Díaz, DD, Torres, T, “Alkynyl-Substituted Phthalocyanines: Versatile Building Blocks for Molecular Materials Synthesis.” J. Porphyrins Phthalocyanines, 10 1083–1100 (2006)

    CAS  Google Scholar 

  38. Armarego, W, Perrin, D, Purification of Laboratory Chemicals, Vol. 102, pp. 102–103. Pergamon Press, Oxford (1980)

    Google Scholar 

  39. Gürol, İ, Gümüş, G, Musluoğlu, E, Arslan, Y, Ahsen, V, “Synthesis and Characterization of O-and S-Bridged Perfluoroalkylated Metal-Free and Zinc Phthalocyanines.” J. Porphyrins Phthalocyanines, 17 555–563 (2013)

    Google Scholar 

  40. Wöhrle, D, Eskes, M, Shigehara, K, Yamada, A, “A Simple Synthesis of 4,5-Disubstituted 1,2-Dicyanobenzenes and 2,3,9,10,16,17,23,24-Octasubstituted Phthalocyanines.” Synthesis, 1993 194–196 (1993)

    Google Scholar 

  41. Durmuş, M, Yaman, H, Göl, C, Ahsen, V, Nyokong, T, “Water-Soluble Quaternized Mercaptopyridine-Substituted Zinc-Phthalocyanines: Synthesis, Photophysical, Photochemical and Bovine Serum Albumin Binding Properties.” Dyes Pigments, 91 153–163 (2011)

    Google Scholar 

  42. Kanat, Z, Dinçer, H, “The Synthesis and Characterization of Nonperipherally Tetra Terminal Alkynyl Substituted Phthalocyanines and Glycoconjugation via the Click Reaction.” Dalton Trans., 43 8654–8663 (2014)

    CAS  Google Scholar 

  43. Gacal, BN, Koz, B, Gacal, B, Kiskan, B, Erdogan, M, Yagci, Y, “Pyrene Functional Poly(vinyl alcohol) by “Click” Chemistry.” J. Polym. Sci. Part A Polym. Chem., 47 1317–1326 (2009)

    CAS  Google Scholar 

  44. Crispim, EG, Piai, JF, Schüquel, IT, Rubira, AF, Muniz, EC, “Functionalization of Poly(vinyl alcohol) by Addition of Methacryloyl Groups: Characterization by FTIR and NMR and Optimization of Reaction Conditions by RSM.” e-Polymers, 6 (2006)

  45. Knall, A-C, Hollauf, M, Saf, R, Slugovc, C, “A Trifunctional Linker Suitable for Conducting Three Orthogonal Click Chemistries in One Pot.” Org. Biomol. Chem., 14 10576–10580 (2016)

    CAS  Google Scholar 

  46. Castelaín, M, Martínez, G, Marco, C, Ellis, G, Salavagione, HJ, “Effect of Click-Chemistry Approaches for Graphene Modification on the Electrical, Thermal, and Mechanical Properties of Polyethylene/Graphene Nanocomposites.” Macromolecules, 46 8980–8987 (2013)

    Google Scholar 

  47. Pawlak, M, Mistlberger, G, Bakker, E, “In Situ Surface Functionalization of Plasticized Poly(vinyl chloride) Membranes by ‘Click Chemistry’.” J. Mater. Chem., 22 12796–12801 (2012)

    CAS  Google Scholar 

  48. Li, M, Khoshdel, E, Haddleton, DM, “Synthesis of Water Soluble PEGylated (Copper) Phthalocyanines via Mitsunobu Reaction and Cu(I)-catalysed Azide–alkyne Cycloaddition (CuAAC) “Click” Chemistry.” Polym. Chem., 4 4405–4411 (2013)

    CAS  Google Scholar 

  49. Awada, H, Daneault, C, “Chemical Modification of Poly(vinyl alcohol) in Water.” Appl. Sci., 5 840–850 (2015)

    CAS  Google Scholar 

  50. Korbag, I, Mohamed Saleh, S, “Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol/Lignin Film.” Int. J. Environ. Stud., 73 226–235 (2016)

    CAS  Google Scholar 

  51. Kim, JH, Shin, DS, Han, MH, Kwon, OW, Lee, HK, Lee, SG, Ghim, HD, Park, JM, Han, SS, Noh, SK, “Surface Free Energy Analysis of Poly(vinyl alcohol) Films Having Various Molecular Parameters.” J. Appl. Polym. Sci., 105 424–428 (2007)

    CAS  Google Scholar 

  52. Nyamu, SN, Ombaka, L, Masika, E, Ng’ang’a, M, “Antimicrobial Photodynamic Activity of Phthalocyanine Derivatives.” Adv. Chem., 2018 1–8 (2018)

    Google Scholar 

  53. Hung, HC, Jain, P, Zhang, P, Sun, F, Sinclair, A, Bai, T, Li, B, Wu, K, Tsao, C, Liu, EJ, “A Coating-Free Nonfouling Polymeric Elastomer.” Adv. Mater., 29 1700617 (2017)

    Google Scholar 

  54. Saraei, M, Zarrini, G, Rajabpour, P, “Synthesis, Characterization and Polymerization of a Novel Acrylate Monomer Containing Both 4H-Pyran-4-one and 1,2,3-Triazole Moiety and Evaluation of Their Antibacterial Activity.” Iran. Chem. Commun., 6 271–279 (2018)

    Google Scholar 

  55. Acik, G, “Study on the Synthesis and Characterization of Antibacterial Polystyrenes.” J. Turk. Chem. Soc. Sect. A Chem., 6 245–252 (2019)

    CAS  Google Scholar 

  56. Hirayama, M, “The Antimicrobial Activity, Hydrophobicity and Toxicity of Sulfonium Compounds, and Their Relationship.” Biocontrol Sci., 16 23–31 (2011)

    CAS  Google Scholar 

  57. Muñoz-Bonilla, A, López, D, Fernández-García, M, “Providing Antibacterial Activity to Poly(2-hydroxy ethyl methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative.” Int. J. Mol. Sci., 19 4120 (2018)

    Google Scholar 

Download references

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

IG: Investigation, Methodology. CA: Methodology, EA: Methodology, CT: Investigation, MD: Investigation, GA: Investigation, Project administration, Writing-original draft, Methodology, Conceptualization, Software, Supervision, Writing - Review & Editing.

Corresponding author

Correspondence to Gokhan Acik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurol, I., Altinkok, C., Agel, E. et al. Phthalocyanine functionalized poly(vinyl alcohol)s via CuAAC click chemistry and their antibacterial properties. J Coat Technol Res 17, 1587–1596 (2020). https://doi.org/10.1007/s11998-020-00363-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00363-y

Keywords