Effect of fabric texture on the durability of fluorine-free superhydrophobic coatings


Water repellency is a desired feature of fabrics for certain applications in textile industry such as water-repellent garments, tents, and umbrellas. Coating of fabrics with fluorocarbons or silicones followed by heat treatment is the general process to impart hydrophobicity even though the resulted water repellency is limited. In this study, we prepare a fluorine-free superhydrophobic coating from hydrophobic SiO2 nanoparticles that can be easily applied to common fabrics by simply spray coating, leading to superhydrophobic fabrics with a water contact angle of 172° and a sliding angle of 3°. The process to achieve extreme water repellency is simple and only involves a single step, and there is no need for further processes like annealing or heat treatment. The superhydrophobic coated fabrics display durability dependence on the texture of the underlying material, where coated chenille and nonwoven fabrics show robust mechanical durability against water impact, abrasion, and laundering. The ready availability of the coating materials, the simple process of application, and the robust mechanical durability of superhydrophobic fabrics show great potential for real-world applications.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Bahners, T, Textor, T, Opwis, K, Schollmeyer, E, “Recent Approaches to Highly Hydrophobic Textile Surfaces.” J. Adhes. Sci. Technol., 22 (3–4) 285–309 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    Türk, M, Ehrmann, A, Mahltig, B, “Water-, Oil-, and Soil-Repellent Treatment of Textiles, Artificial Leather, and Leather.” J. Text. Inst., 106 611–620 (2015)

    Article  Google Scholar 

  3. 3.

    Gozutok, Z, Kinj, O, Torun, I, Ozdemir, AT, Onses, MS, “One-Step Deposition of Hydrophobic Coatings on Paper for Printed-Electronics Applications.” Cellulose, 26 3503–3512 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Zimmermann, J, Reifler, FA, Fortunato, G, Gerhardt, LC, Seeger, S, “A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles.” Adv. Funct. Mater., 18 3662–3669 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    Przybylak, M, Maciejewski, H, Dutkiewicz, A, Dąbek, I, Nowicki, M, “Fabrication of Superhydrophobic Cotton Fabrics by a Simple Chemical Modification.” Cellulose, 23 2185–2197 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, 5 31–55 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Bu, Y, Zhang, S, Cai, Y, Yang, Y, Ma, S, Huang, J, Yang, H, Ye, D, Zhou, Y, Xu, W, Gu, S, “Fabrication of Durable Antibacterial and Superhydrophobic Textiles Via In Situ Synthesis of Silver Nanoparticle on Tannic Acid-Coated Viscose Textiles.” Cellulose, 26 2109–2122 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    Zhu, X, Zhang, Z, Song, Y, Yan, J, Wang, Y, Ren, G, “A Waterproofing Textile with Robust Superhydrophobicity in Either Air or Oil Surroundings.” J. Taiwan Inst. Chem. Eng., 71 421–425 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    Shirtcliffe, NJ, McHale, G, Atherton, S, Newton, MI, “An Introduction to Superhydrophobicity.” Adv. Colloid Interface Sci., 161 124–138 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    Thorvaldsson, A, Edvinsson, P, Glantz, A, Rodriguez, K, Walkenström, P, Gatenholm, P, “Superhydrophobic Behaviour of Plasma Modified Electrospun Cellulose Nanofiber-Coated Microfibers.” Cellulose, 19 1743–1748 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    Shateri-Khalilabad, M, Yazdanshenas, ME, “One-Pot Sonochemical Synthesis of Superhydrophobic Organic–Inorganic Hybrid Coatings on Cotton Cellulose.” Cellulose, 20 3039–3051 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    Torun, I, Ruzi, M, Er, F, Onses, MS, “Superhydrophobic Coatings Made from Biocompatible Polydimethylsiloxane and Natural Wax.” Prog. Org. Coat., 136 105279 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Forsman, N, Johansson, LS, Koivula, H, Tuure, M, Kääriäinen, P, Österberg, M, “Open Coating with Natural Wax Particles Enables Scalable, Non-toxic Hydrophobation of Cellulose-Based Textiles.” Carbohydr. Polym., 227 115363 (2020)

    Article  Google Scholar 

  14. 14.

    Gao, Q, Zhu, Q, Guo, Y, Yang, CQ, “Formation of Highly Hydrophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Nonfluorinated Alkylsilane.” Ind. Eng. Chem. Res., 48 9797–9803 (2009)

    CAS  Article  Google Scholar 

  15. 15.

    Deng, B, Cai, R, Yu, Y, Jiang, H, Wang, C, Li, J, Li, L, Yu, M, Li, J, Xie, L, Huang, Q, Fan, C, “Laundering Durability of Superhydrophobic Cotton Fabric.” Adv. Mater., 22 5473–5477 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    Wang, H, Xue, Y, Ding, J, Feng, L, Wang, X, Lin, T, “Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane.” Angew. Chem. Int. Ed., 50 11433–11436 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    Makowski, T, Kowalczyk, D, Fortuniak, W, Jeziorska, D, Brzezinski, S, Tracz, A, “Superhydrophobic Properties of Cotton Woven Fabrics with Conducting 3D Networks of Multiwall Carbon Nanotubes, MWCNTs.” Cellulose, 21 4659–4670 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    Zahid, M, Mazzon, G, Athanassiou, A, Bayer, IS, “Environmentally Benign Non-wettable Textile Treatments: A Review of Recent State-of-the-Art.” Adv. Colloid Interface Sci., 270 216–250 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    Ge, B, Yang, X, Li, H, Zhao, L, Ren, G, Miao, X, Pu, X, Li, W, “A Durable Superhydrophobic BiOBr/PFW Cotton Fabric for Visible Light Response Degradation and Oil/Water Separation Performance.” Colloids Surfaces A Physicochem. Eng. Asp., 585 124027 (2020)

    Article  Google Scholar 

  20. 20.

    Zhu, Q, Gao, Q, Guo, Y, Yang, CQ, Shen, L, “Modified Silica Sol Coatings for Highly Hydrophobic Cotton and Polyester Fabrics Using a One-Step Procedure.” Ind. Eng. Chem. Res., 50 5881–5888 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    Li, S, Huang, J, Ge, M, Cao, C, Deng, S, Zhang, S, Chen, G, Zhang, K, Al-Deyab, SS, Lai, Y, “Robust Flower-Like TiO2@Cotton Fabrics with Special Wettability for Effective Self-Cleaning and Versatile Oil/Water Separation.” Adv. Mater. Interfaces, 2 (14) 1500220 (2015)

    Article  Google Scholar 

  22. 22.

    Han, SW, Park, EJ, Jeong, MG, Kim, IH, Seo, HO, Kim, JH, Kim, KD, Kim, YD, “Fabrication of Recyclable Superhydrophobic Cotton Fabrics.” Appl. Surf. Sci., 400 405–412 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    Zahid, M, Heredia-Guerrero, JA, Athanassiou, A, Bayer, IS, “Robust Water Repellent Treatment for Woven Cotton Fabrics with Eco-Friendly Polymers.” Chem. Eng. J., 319 321–332 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    Song, H, Zhao, Z, Xu, G, Wang, Y, Hu, J, “Facial Preparation of Superhydrophobic and Superoleophilic Textiles by Depositing Nano-SiO2 for Oil–Water Separation.” J. Text. Inst., 108 1297–1301 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    Su, X, Li, H, Lai, X, Zhang, L, Wang, J, Liao, X, Zeng, X, “Vapor–Liquid Sol–Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil–Water Separation.” ACS Appl. Mater. Interfaces, 9 28089–28099 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    Ren, G, Song, Y, Li, X, Wang, B, Zhou, Y, Wang, Y, Ge, B, Zhu, X, “A Simple Way to an Ultra-Robust Superhydrophobic Fabric with Mechanical Stability, UV Durability, and UV Shielding Property.” J. Colloid Interface Sci., 522 57–62 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    Gao, L, McCarthy, TJ, “‘Artificial Lotus Leaf’ Prepared Using a 1945 Patent and a Commercial Textile.” Langmuir, 22 5998–6000 (2006)

    CAS  Article  Google Scholar 

  28. 28.

    Torun, I, Onses, MS, “Robust Superhydrophobicity on Paper: Protection of Spray-Coated Nanoparticles Against Mechanical Wear by the Microstructure of Paper.” Surf. Coatings Technol., 22 5998–6000 (2017)

    Google Scholar 

  29. 29.

    Tian, X, Verho, T, Ras, RHA, “Moving Superhydrophobic Surfaces Toward Real-World Applications.” Science, 352 142–143 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    Cheng, Y, Zhu, T, Li, S, Huang, J, Mao, J, Yang, H, Gao, S, Chen, Z, Lai, Y, “A Novel Strategy for Fabricating Robust Superhydrophobic Fabrics by Environmentally–Friendly Enzyme Etching.” Chem. Eng. J., 355 290–298 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    Liu, K, Vuckovac, M, Latikka, M, Huhtamäki, T, Ras, RHA, “Improving Surface-Wetting Characterization.” Science, 363 (6432) 1147–1148 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    Ipekci, HH, Arkaz, HH, Onses, MS, Hancer, M, “Superhydrophobic Coatings with Improved Mechanical Robustness Based on Polymer Brushes.” Surf. Coatings Technol., 299 162–168 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    Torun, I, Celik, N, Hancer, M, Es, F, Emir, C, Turan, R, Onses, MS, “Water Impact Resistant and Antireflective Superhydrophobic Surfaces Fabricated by Spray Coating of Nanoparticles: Interface Engineering via End-Grafted Polymers.” Macromolecules, 51 (23) 10011–10020 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    Ogihara, H, Xie, J, Okagaki, J, Saji, T, “Simple Method for Preparing Superhydrophobic Paper: Spray-Deposited Hydrophobic Silica Nanoparticle Coatings Exhibit High Water-Repellency and Transparency.” Langmuir, 28 4605–4608 (2012)

    CAS  Article  Google Scholar 

Download references


MSO acknowledges support from the Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP).

Author information



Corresponding authors

Correspondence to Mahmut Ruzi or M. Serdar Onses.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 225 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celik, N., Altındal, S., Gozutok, Z. et al. Effect of fabric texture on the durability of fluorine-free superhydrophobic coatings. J Coat Technol Res 17, 785–796 (2020). https://doi.org/10.1007/s11998-020-00333-4

Download citation


  • Superhydrophobic
  • Self-cleaning
  • Fabric
  • Nanoparticles
  • Coating