Skip to main content

Synthesis and application of silver nanoparticles as biocidal agent in polyurethane coating

Abstract

Nanostructured materials have become increasingly widespread, and in recent decades, the processing industries have shown a great interest in coating materials with antibacterial properties. In this research, the biocidal effect of silver nanoparticles in the water-soluble polyurethane paint composition was evaluated. Silver nanoparticles in the aqueous phase were prepared by chemical reduction at 500 ppm using polyvinyl alcohol. The material was characterized by UV–Vis, inductively coupled plasma mass spectrometry, dynamic light scattering, zeta potential, and transmission electron microscopy. The effect of silver nanoparticles in terms of yellowing and gloss variation was evaluated by a UV-B radiation test. Silver nanoparticles had no effect on the gloss and yellowing paint film. In addition, positive results were obtained for the protection and resistance against bacteria but not satisfactory resistance against fungi.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Hochmannova, L, Vytrasova, J, “Photocatalytic and Antimicrobial Effects of Interior Paints.” Prog. Org. Coat., 67 (1) 1–5 (2010). https://doi.org/10.1016/j.porgcoat.2009.09.016

    CAS  Article  Google Scholar 

  2. Kumar, A, Vemula, PK, Ajayan, PM, John, G, “Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil.” Nat. Mater., 7 236–241 (2008)

    CAS  Article  Google Scholar 

  3. Li, X, Xie, J, Liao, L, Jiang, X, Fu, H, “UV-Curable Polyurethane Acrylate-Ag/TiO2 Nanocomposites with Superior UV Light Antibacterial Activity.” Int. J. Polym. Mater. Polym. Biomater., 66 (16) 835–843 (2017). https://doi.org/10.1080/00914037.2016.1276063

    CAS  Article  Google Scholar 

  4. Alviano, WS, Alviano, DS, Diniz, CG, Antoniolli, AR, Alviano, CS, Farias, LM, Carvalho, MAR, Souza, MMG, Bolognese, AM, “In Vitro Antioxidant Potential of Medicinal Plant Extracts and Their Activities Against Oral Bacteria Based on Brazilian Folk Medicine.” Arch. Oral Biol., 53 (6) 545–552 (2008). https://doi.org/10.1016/j.archoralbio.2007.12.001

    Article  Google Scholar 

  5. Rai, M, Yadav, A, Gade, A, “Silver Nanoparticles as a New Generation of Antimicrobials.” Biotechnol. Adv., 27 (1) 76–83 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002

    CAS  Article  Google Scholar 

  6. Prabhu, S, Poulose, EK, “Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects.” Int. Nano Lett., 2 (1) 32 (2012). https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  7. de Souza, AV, Valério, A, Buske, JLO, Benedet, ME, Pistor, V, Machado, RAF, “Influence of Stabilizer Additives on Thermochromic Coating for Temperature Monitoring.” J. Coat. Technol. Res., 13 (6) 1139–1144 (2016). https://doi.org/10.1007/s11998-016-9811-7

    CAS  Article  Google Scholar 

  8. Valério, A, Mancusi, E, Ferreira, F, de Souza, SMAGU, González, SYG, “Biopolymer-Hydrophobic Drug Fibers and the Delivery Mechanisms for Sustained Release Applications.” Eur. Polym. J., 112 400–410 (2019). https://doi.org/10.1016/j.eurpolymj.2019.01.016

    CAS  Article  Google Scholar 

  9. Abd El-Wahab, H, Saleh, TS, Zayed, EM, El-Sayed, AS, Assaker, RSA, “Synthesis and Evaluation of New Anti-microbial Additive Based on Pyrimidine Derivative Incorporated Physically into Polyurethane Varnish for Surface Coating and into Printing Ink Paste.” Egypt. J. Pet., 24 (3) 247–253 (2015). https://doi.org/10.1016/j.ejpe.2015.07.002

    Article  Google Scholar 

  10. Guardiola, FA, Cuesta, A, Meseguer, J, Esteban, MA, “Risks of Using Antifouling Biocides in Aquaculture.” Int. J. Mol. Sci., 13 (2) 1541–1560 (2012). https://doi.org/10.3390/ijms13021541

    CAS  Article  Google Scholar 

  11. Contant, S, Caritá Júnior, G, Machado, PFMPB, Lona, LMF, “Evaluation of the Effect of Dry-Film Biocides on Paint Film Preservation Using Neural Networks.” Braz. J. Chem. Eng., 27 (4) 643–651 (2010). https://doi.org/10.1590/S0104-66322010000400016

    CAS  Article  Google Scholar 

  12. Kumar, A, Vemula, PK, Ajayan, PM, John, G, “Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil.” Nat. Mater., 7 (3) 236–241 (2008). https://doi.org/10.1038/nmat2099

    CAS  Article  Google Scholar 

  13. Ananda, AP, Manukumar, HM, Krishnamurthy, NB, Nagendra, BS, Savitha, KR, “Assessment of Antibacterial Efficacy of a Biocompatible Nanoparticle PC@AgNPs Against Staphylococcus aureus.” Microb. Pathog., 126 27–39 (2019). https://doi.org/10.1016/j.micpath.2018.10.029

    CAS  Article  Google Scholar 

  14. Merchan, M, Sedlarikova, J, Vesel, A, Machovsky, M, Sedlarik, V, Saha, P, “Antimicrobial Silver Nitrate-Doped Polyvinyl Chloride Cast Films: Influence of Solvent on Morphology and Mechanical Properties.” Int. J. Polym. Mater., 62 (2) 101–108 (2013). https://doi.org/10.1080/00914037.2012.670821

    CAS  Article  Google Scholar 

  15. Abou El-Nour, KMM, Eftaiha, A, Al-Warthan, A, Ammar, RAA, “Synthesis and Applications of Silver Nanoparticles.” Arab. J. Chem., 3 (3) 135–140 (2010). https://doi.org/10.1016/j.arabjc.2010.04.008

    CAS  Article  Google Scholar 

  16. Kalishwaralal, K, BarathManiKanth, S, Pandian, SRK, Deepak, V, Gurunathan, S, “Silver Nanoparticles Impede the Biofilm Formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.” Colloids Surf. B Biointerfaces, 79 (2) 340–344 (2010). https://doi.org/10.1016/j.colsurfb.2010.04.014

    CAS  Article  Google Scholar 

  17. Ahmed, S, Ahmad, M, Swami, BL, Ikram, S, “A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise.” J. Adv. Res., 7 (1) 17–28 (2016). https://doi.org/10.1016/j.jare.2015.02.007

    CAS  Article  Google Scholar 

  18. Kung, J-C, Chen, Y-J, Chiang, Y-C, Lee, C-L, Yang-Wang, Y-T, Hung, C-C, Shih, C-J, “Antibacterial Activity of Silver Nanoparticle (AgNP) Confined Mesoporous Structured Bioactive Powder Against Enterococcus faecalis Infecting Root Canal Systems.” J. Non-Cryst. Solids, 502 62–70 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.06.030

    CAS  Article  Google Scholar 

  19. Zhang, X-F, Liu, Z-G, Shen, W, Gurunathan, S, “Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches.” Int. J. Mol. Sci., 17 (9) 1534 (2016). https://doi.org/10.3390/ijms17091534

    CAS  Article  Google Scholar 

  20. Jana, NR, Gearheart, L, Murphy, CJ, “Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio.” Chem. Commun., 7 617–618 (2001). https://doi.org/10.1039/b100521i

    Article  Google Scholar 

  21. ASTM, “ASTM G 154/2004 Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials,” 2004. https://doi.org/10.1520/G0154-04

  22. ASTM, “ASTM D 523 Standard Test Method for Specular Gloss,” 2008. https://doi.org/10.1520/D0523-08

  23. ASTM, “ASTM D2574-94 Standard Test Method for Resistance of Emulsion Paints in the Container to Attack by Microorganisms,” 2016

  24. ASTM, “ASTM D 5590 Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate Assay,” 2017. https://doi.org/10.1520/D5590-17

  25. Japanese Standards Association, “JIS Z 2801:2000 Antimicrobial ProductsTest for Antimicrobial Activity and Efficacy,” 2000

  26. Jin, R, et al., “Photoinduced Conversion of Silver Nanospheres to Nanoprisms.” Science, 294 (5548) 1901–1903 (2001). https://doi.org/10.1126/science.1066541

    CAS  Article  Google Scholar 

  27. Gupta, KK, Jassal, M, Agrawal, AK, “Functional Finishing of Cotton Using Titanium Dioxide and Zinc Oxide Nanoparticles.” Res. J. Text. Appar., 11 (3) 1–10 (2007). https://doi.org/10.1108/RJTA-11-03-2007-B001

    Article  Google Scholar 

  28. Sundaresan, K, Sivakumar, A, Vigneswaran, C, Ramachandran, T, “Influence of Nano Titanium Dioxide Finish, Prepared by Sol–Gel Technique, on the Ultraviolet Protection, Antimicrobial, and Self-Cleaning Characteristics of Cotton Fabrics.” J. Ind. Text., 41 (3) 259–277 (2012). https://doi.org/10.1177/1528083711414962

    CAS  Article  Google Scholar 

  29. Acharya, D, Mohanta, B, Deb, S, Sen, AK, “Theoretical Prediction of Absorbance Spectra Considering the Particle Size Distribution Using Mie Theory and Their Comparison with the Experimental UV–Vis Spectra of Synthesized Nanoparticles.” Spectrosc. Lett., 51 (3) 139–143 (2018). https://doi.org/10.1080/00387010.2018.1442351

    CAS  Article  Google Scholar 

  30. Freitas, C, Müller, RH, “Effect of Light and Temperature on Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLN™) Dispersions.” Int. J. Pharm., 168 (2) 221–229 (1998). https://doi.org/10.1016/S0378-5173(98)00092-1

    CAS  Article  Google Scholar 

  31. Valério, A, Conti, DS, Araújo, PHH, Sayer, C, da Rocha, SRP, “Synthesis of PEG–PCL-Based Polyurethane Nanoparticles by Miniemulsion Polymerization.” Colloids Surf. B Biointerfaces, 135 35–41 (2015). https://doi.org/10.1016/j.colsurfb.2015.07.044

    CAS  Article  Google Scholar 

  32. Tantra, R, Schulze, P, Quincey, P, “Effect of Nanoparticle Concentration on Zeta-Potential Measurement Results and Reproducibility.” Particuology, 8 (3) 279–285 (2010). https://doi.org/10.1016/j.partic.2010.01.003

    CAS  Article  Google Scholar 

  33. Campoccia, D, Montanaro, L, Arciola, CR, “A Review of the Biomaterials Technologies for Infection-Resistant Surfaces.” Biomaterials, 34 (34) 8533–8554 (2013). https://doi.org/10.1016/j.biomaterials.2013.07.089

    CAS  Article  Google Scholar 

  34. Panáček, A, Kolář, M, Večeřová, R, Prucek, R, Soukupová, J, Kryštof, V, Hamal, P, Zbořil, R, Kvítek, L, “Antifungal Activity of Silver Nanoparticles Against Candida spp.” Biomaterials, 30 (31) 6333–6340 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.065

    CAS  Article  Google Scholar 

  35. dos Santos, CA, Jozala, AF, Pessoa, A, Jr, Seckler, MM, “Antimicrobial Effectiveness of Silver Nanoparticles Co-stabilized by the Bioactive Copolymer Pluronic F68.” J. Nanobiotechnol., 10 (1) 43 (2012). https://doi.org/10.1186/1477-3155-10-43

    CAS  Article  Google Scholar 

  36. Perito, B, Giorgetti, E, Marsili, P, Muniz-Miranda, M, “Antibacterial Activity of Silver Nanoparticles Obtained by Pulsed Laser Ablation in Pure Water and in Chloride Solution.” Beilstein J. Nanotechnol., 7 465–473 (2016). https://doi.org/10.3762/bjnano.7.40

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CAPES (Grant No. 1) and CNPq (Grant No. 1). The authors thank WEG for providing the laboratory for some experiments and TNS for collaboration and partnership, yielding samples, and technical material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. A. Guelli U. Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechtold, M., Valério, A., Ulson de Souza, A.A. et al. Synthesis and application of silver nanoparticles as biocidal agent in polyurethane coating. J Coat Technol Res 17, 613–620 (2020). https://doi.org/10.1007/s11998-019-00297-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00297-0

Keywords

  • Antibacterial paints
  • Nanotechnology
  • Silver-based biocide
  • Coating