Skip to main content
Log in

A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Since corrosion has tremendous economic effects, academics and industries have sought to develop more effective coatings. These efforts have led to profound importance of nanocomposite coatings based on polymers and carbon nanostructures. It is shown that good reinforcement, advanced mechanical properties, and high corrosion resistance are only found at relatively low levels of nanocarbon (i.e., fullerene, carbon black, carbon nanotubes, graphene, graphene oxide, and carbon dots) loadings in coating compositions. Herein, a survey of breakthrough scientific studies on application of carbon nanostructures in corrosion-resistant organic coatings is carried out to pave the way for future developments in novel nanocoatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Wang, N, et al., “Dopamine Modified Metal-Organic Frameworks on Anti-Corrosion Properties of Waterborne Epoxy Coatings.” Prog. Org. Coat., 109 126–134 (2017)

    Google Scholar 

  2. He, P, et al., “Synergistic Effect of Polyaniline Grafted Basalt Plates for Enhanced Corrosion Protective Performance of Epoxy Coatings.” Prog. Org. Coat., 110 1–9 (2017)

    Google Scholar 

  3. Ramezanzadeh, B, et al., “Corrosion Protection of Steel with Zinc Phosphate Conversion Coating and Post-Treatment by Hybrid Organic-Inorganic Sol-Gel Based Silane Film.” J. Electrochem. Soc., 164 (6) C224–C230 (2017)

    CAS  Google Scholar 

  4. Qiu, S, et al., “Long-Term Corrosion Protection of Mild Steel by Epoxy Coating Containing Self-Doped Polyaniline Nanofiber.” Synth. Met., 229 39–46 (2017)

    CAS  Google Scholar 

  5. Chang, K-C, et al., “Room-Temperature Cured Hydrophobic Epoxy/Graphene Composites as Corrosion Inhibitor for Cold-Rolled Steel.” Carbon, 66 144–153 (2014)

    CAS  Google Scholar 

  6. Shifler, DA, “Understanding Material Interactions in Marine Environments to Promote Extended Structural Life.” Corros. Sci., 47 (10) 2335–2352 (2005)

    CAS  Google Scholar 

  7. Hung, W-I, Chang, K-C, Chang, Y-H, Yeh, J-M, “Advanced Anticorrosive Coatings Prepared From Polymer-Clay Nanocomposite Materials.” In: Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications. IntechOpen (2011)

  8. Shipping, ABO, Guidance Notes on the Inspection, Maintenance and Application of Marine Coating Systems. American Bureau of Shipping (ABS) (2007).

  9. Mitchelson, B, “Protective Coatings Solutions for Deepwater Projects.” Brief. Explor. Prod. Oil Gas Rev., 2 1–4 (2003)

    Google Scholar 

  10. Dennis, RV, et al., “Hybrid Nanostructured Coatings for Corrosion Protection of Base Metals: A Sustainability Perspective.” Mater. Res. Express, 2 (3) 032001 (2015)

    Google Scholar 

  11. Böhm, S, “Graphene Against Corrosion.” Nat. Nanotechnol., 9 (10) 741 (2014)

    Google Scholar 

  12. Aneja, KS, et al., “Graphene Based Anticorrosive Coatings for Cr(VI) Replacement.” Nanoscale, 7 (42) 17879–17888 (2015)

    CAS  Google Scholar 

  13. Förstner, U, Wittmann, GT, Metal Pollution in the Aquatic Environment. Springer, Berlin (2012)

    Google Scholar 

  14. Husain, E, et al., “Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel.” ACS Appl. Mater. Interfaces., 5 (10) 4129–4135 (2013)

    CAS  Google Scholar 

  15. Pourhashem, S, et al., “Corrosion Protection Properties of Novel Epoxy Nanocomposite Coatings Containing Silane Functionalized Graphene Quantum Dots.” J. Alloy. Compd., 731 1112–1118 (2018)

    CAS  Google Scholar 

  16. Richards, CAJ, et al., “Evaluation of Multi-Layered Graphene Nano-Platelet Composite Coatings for Corrosion Control Part I—Contact Potentials and Gas Permeability.” Corros. Sci., 136 285–291 (2018)

    CAS  Google Scholar 

  17. Wei, H, et al., “Anticorrosive Conductive Polyurethane Multiwalled Carbon Nanotube Nanocomposites.” J. Mater. Chem. A, 1 (36) 10805–10813 (2013)

    CAS  Google Scholar 

  18. Wu, Y, et al., “Synthesis of Graphene/Epoxy Resin Composite via 1,8-Diaminooctane by Ultrasonication Approach for Corrosion Protection.” Ultrason. Sonochem., 42 464–470 (2018)

    CAS  Google Scholar 

  19. Yao, X, et al., “Comparison of Carbon Nanotubes and Graphene Oxide Coated Carbon Fiber for Improving the Interfacial Properties of Carbon Fiber/Epoxy Composites.” Compos. B Eng., 132 170–177 (2018)

    CAS  Google Scholar 

  20. Zhan, Y, et al., “Epoxy Composites Coating with Fe3O4 Decorated Graphene Oxide: Modified Bio-Inspired Surface Chemistry, Synergistic Effect and Improved Anti-Corrosion Performance.” Appl. Surf. Sci., 436 756–767 (2018)

    CAS  Google Scholar 

  21. Krishnamoorthy, K, et al., “Graphene Oxide Nanopaint.” Carbon, 72 328–337 (2014)

    CAS  Google Scholar 

  22. Aglan, A, et al., “Formulation and Evaluation of Nano-Structured Polymeric Coatings for Corrosion Protection.” Surf. Coat. Technol., 202 (2) 370–378 (2007)

    CAS  Google Scholar 

  23. Brooman, E, “Modifying Organic Coatings to Provide Corrosion Resistance: Part II—Inorganic Additives and Inhibitors.” Met. Finish., 100 (5) 424449–424753 (2002)

    Google Scholar 

  24. Chico, B, et al., “Corrosion Resistance of Steel Treated with Different Silane/Paint Systems.” J. Coat. Technol. Res., 9 (1) 3–13 (2012)

    CAS  Google Scholar 

  25. Armelin, E, et al., “Marine Paint Fomulations: Conducting Polymers as Anticorrosive Additives.” Prog. Org. Coat., 59 (1) 46–52 (2007)

    CAS  Google Scholar 

  26. Rawlins, JW, et al, The Waterborne Symposium: Proceedings of the Thirty-Ninth Annual International Waterborne, High-Solids, and Powder Coatings Symposium Held in New Orleans, DEStech Publications, Louisiana February 13–17, 2012

  27. Wang, X, et al., “Fabrication and Characterization of Graphene-Reinforced Waterborne Polyurethane Nanocomposite Coatings by the Sol–Gel Method.” Surf. Coat. Technol., 206 (23) 4778–4784 (2012)

    CAS  Google Scholar 

  28. Alessi, P, “New Tech Against Corrosion.” Nanotech Magazine (2014)

  29. Kaiser, J-P, Zuin, S, Wick, P, “Is Nanotechnology Revolutionizing the Paint and Lacquer Industry? A Critical Opinion.” Sci. Total Environ., 442 282–289 (2013)

    CAS  Google Scholar 

  30. Kaiser, J, Diener, L, Wick, P, “Nanoparticles in Paints: A New Strategy to Protect Façades And Surfaces?” J. Phys. Conf. Ser., 429 012036 (2013)

    Google Scholar 

  31. Geim, AK, Novoselov, KS, “The Rise of Graphene.” Nat. Mater., 6 (3) 183–191 (2007)

    CAS  Google Scholar 

  32. Hu, H, et al., “Enhanced Dispersion of Carbon Nanotube in Silicone Rubber Assisted by Graphene.” Polymer, 53 (15) 3378–3385 (2012)

    CAS  Google Scholar 

  33. Wiese, G, et al, “Methods of Forming Protecting Coatings on Substrate Surfaces.” Google Patents (2013)

  34. González-Domínguez, JM, et al., “Reactive Fillers Based on SWCNTs Functionalized with Matrix-Based Moieties for the Production of Epoxy Composites with Superior and Tunable Properties.” Nanotechnology, 23 (28) 285702 (2012)

    Google Scholar 

  35. Shenderova, O, Zhirnov, V, Brenner, D, “Carbon Nanostructures.” Crit. Rev. Solid State Mater. Sci., 27 (3–4) 227–356 (2002)

    CAS  Google Scholar 

  36. Martin-Gallego, M, et al., “Comparison of Filler Percolation and Mechanical Properties in Graphene and Carbon Nanotubes Filled Epoxy Nanocomposites.” Eur. Polym. J., 49 (6) 1347–1353 (2013)

    CAS  Google Scholar 

  37. Rafiee, MA, et al., “Fullerene–Epoxy Nanocomposites-Enhanced Mechanical Properties at Low Nanofiller Loading.” J. Nanopart. Res., 13 (2) 733–737 (2011)

    CAS  Google Scholar 

  38. Kuilla, T, et al., “Recent Advances in Graphene Based Polymer Composites.” Prog. Polym. Sci., 35 (11) 1350–1375 (2010)

    CAS  Google Scholar 

  39. Mauter, MS, Elimelech, M, “Environmental Applications of Carbon-Based Nanomaterials.” Environ. Sci. Technol., 42 (16) 5843–5859 (2008)

    CAS  Google Scholar 

  40. Potts, JR, et al., “Graphene-Based Polymer Nanocomposites.” Polymer, 52 (1) 5–25 (2011)

    CAS  Google Scholar 

  41. Young, RJ, et al., “The Mechanics of Graphene Nanocomposites: A Review.” Compos. Sci. Technol., 72 (12) 1459–1476 (2012)

    CAS  Google Scholar 

  42. Naffakh, M, et al., “Opportunities and Challenges in the Use of Inorganic Fullerene-Like Nanoparticles to Produce Advanced Polymer Nanocomposites.” Prog. Polym. Sci., 38 (8) 1163–1231 (2013)

    CAS  Google Scholar 

  43. Howell, DNL, “Technical Field and Industrial Applicability of the Invention.” Google Patents (2011)

  44. Yadav, B, Kumar, R, “Structure, Properties and Applications of Fullerenes.” Int. J. Nanotechnol. Appl., 2 (1) 15–24 (2008)

    Google Scholar 

  45. Wang, C, et al., “Polymers Containing Fullerene or Carbon Nanotube Structures.” Prog. Polym. Sci., 29 (11) 1079–1141 (2004)

    Google Scholar 

  46. Ogasawara, T, Ishida, Y, Kasai, T, “Mechanical Properties of Carbon Fiber/Fullerene-Dispersed Epoxy Composites.” Compos. Sci. Technol., 69 (11) 2002–2007 (2009)

    CAS  Google Scholar 

  47. Goel, A, Howard, JB, Vander Sande, JB, “Size Analysis of Single Fullerene Molecules by Electron Microscopy.” Carbon, 42 (10) 1907 (2004)

    CAS  Google Scholar 

  48. Bergmann, CP, Machado, FM (eds.), “Carbon Nanoadsorbents.” In: Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, pp. 11–32. Springer (2015)

  49. Tea, N, et al., “Thermal Conductivity of C60 and C70 Crystals.” Appl. Phys. A, 56 (3) 219–225 (1993)

    Google Scholar 

  50. Ivetic, M, Mojovic, Z, Matija, L, “Electrical Conductivity of Fullerene Derivatives.” Materials Science Forum. Trans Tech Publications Ltd., Zurich-Uetikon (2003)

  51. Gopakumar, T, Patel, N, Xanthos, M, “Effect of Nanofillers on the Properties of Flexible Protective Polymer Coatings.” Polym. Compos., 27 (4) 368–380 (2006)

    CAS  Google Scholar 

  52. Badamshina, E, Gafurova, M, “Polymeric Nanocomposites Containing Non-covalently Bonded Fullerene C 60: Properties and Applications.” J. Mater. Chem., 22 (19) 9427–9438 (2012)

    CAS  Google Scholar 

  53. Lim, SY, Effect of Fullerenes Nanofiller and Carbon Black Filler of Corrosion Activities on Paint, Universiti Teknikal Malaysia Melaka, Durian Tunggal (2009)

  54. Liu, D, et al., “Comparative Tribological and Corrosion Resistance Properties of Epoxy Composite Coatings Reinforced with Functionalized Fullerene C60 and Graphene.” Surf. Coat. Technol., 286 354–364 (2016)

    CAS  Google Scholar 

  55. Aschberger, K, et al., “Review of Fullerene Toxicity and Exposure–Appraisal of a Human Health Risk Assessment, Based on Open Literature.” Regul. Toxicol. Pharmacol., 58 (3) 455–473 (2010)

    CAS  Google Scholar 

  56. Silva, TA, et al, “Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review.” J. Nanomater., 2017 4571614 (2017)

    Google Scholar 

  57. Ghasemi-Kahrizsangi, A, et al., “Effect of SDS Modification of Carbon Black Nanoparticles on Corrosion Protection Behavior of Epoxy Nanocomposite Coatings.” Polym. Bull., 72 (9) 2297–2310 (2015)

    CAS  Google Scholar 

  58. Nascarella, MA, Valberg, PA, “Carbon Black vs. Black Carbon and Other Airborne Materials Containing Elemental Carbon: Physical and Chemical Distinctions.” Environ. Pollut., 181 271–286 (2013)

    Google Scholar 

  59. Wei, YH, Zhang, LX, Ke, W, “Evaluation of Corrosion Protection of Carbon Black Filled Fusion-Bonded Epoxy Coatings on Mild Steel During Exposure to a Quiescent 3% NaCl Solution.” Corros. Sci., 49 (2) 287–302 (2007)

    CAS  Google Scholar 

  60. Zhang, W-G, et al., “Corrosion Protection Properties of Lacquer Coatings on Steel Modified by Carbon Black Nanoparticles in NaCl Solution.” Corros. Sci., 49 (2) 654–661 (2007)

    CAS  Google Scholar 

  61. Foyet, A, et al., “Corrosion Protection and Delamination Mechanism of Epoxy/Carbon Black Nanocomposite Coating on AA2024-T3.” J. Electrochem. Soc., 160 (4) C159–C167 (2013)

    CAS  Google Scholar 

  62. Ghasemi-Kahrizsangi, A, et al., “Corrosion Behavior of Modified Nano Carbon Black/Epoxy Coating in Accelerated Conditions.” Appl. Surf. Sci., 331 115–126 (2015)

    CAS  Google Scholar 

  63. Marchebois, H, et al., “Zinc-Rich Powder Coatings Corrosion in Sea Water: Influence of Conductive Pigments.” Prog. Org. Coat., 45 (4) 415–421 (2002)

    CAS  Google Scholar 

  64. Marchebois, H, et al., “Electrochemical Behavior of Zinc-Rich Powder Coatings in Artificial Sea Water.” Electrochim. Acta, 49 (17) 2945–2954 (2004)

    CAS  Google Scholar 

  65. Sheng, X, et al., “Synthesis of Functionalized Graphene/Polyaniline Nanocomposites with Effective Synergistic Reinforcement on Anticorrosion.” Ind. Eng. Chem. Res., 55 (31) 8576–8585 (2016)

    CAS  Google Scholar 

  66. Breuer, O, Sundararaj, U, “Big Returns from Small Fibers: A Review of Polymer/Carbon Nanotube Composites.” Polym. Compos., 25 (6) 630–645 (2004)

    CAS  Google Scholar 

  67. D’Souza, F, Handbook of Carbon Nano Materials. World Scientific, Singapore (2012)

    Google Scholar 

  68. Ma, P-C, et al., “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review.” Compos. A Appl. Sci. Manuf., 41 (10) 1345–1367 (2010)

    Google Scholar 

  69. Irzhak, VI, “Epoxide Composite Materials with Carbon Nanotubes.” Russ. Chem. Rev., 80 (8) 787–806 (2011)

    CAS  Google Scholar 

  70. Greßler, S, Fries, R, Simkó, M “Carbon Nanotubes – Part I: Introduction, Production, Areas of Application (NanoTrust Dossier No. 022en – February 2012), Wien”, p. 6 (2012)

  71. Hammer, P, dos Santos, FC, Cerrutti, BM, Pulcinelli, SH, Santilli, CV, “Corrosion Resistant Coatings Based on Organic-inorganic Hybrids Reinforced by Carbon Nanotubes.” In: Recent Researches in Corrosion Evaluation and Protection. InTech (2012)

  72. Wang, H, et al., “Tribological Behaviors of Aligned Carbon Nanotube/Fullerene-Epoxy Nanocomposites.” Polym. Eng. Sci., 48 (8) 1467–1475 (2008)

    CAS  Google Scholar 

  73. Xiong, J, et al., “The Thermal and Mechanical Properties of a Polyurethane/Multi-Walled Carbon Nanotube Composite.” Carbon, 44 (13) 2701–2707 (2006)

    CAS  Google Scholar 

  74. Hayashi, T, et al., “Mechanical Properties of Carbon Nanomaterials.” ChemPhysChem, 8 (7) 999–1004 (2007)

    CAS  Google Scholar 

  75. Ramanathan, T, et al., “Functionalized Graphene Sheets for Polymer Nanocomposites.” Nat. Nanotechnol., 3 (6) 327–331 (2008)

    CAS  Google Scholar 

  76. Ramirez, AP, “Carbon Nanotubes for Science and Technology.” Bell Labs Tech. J., 10 (3) 171–185 (2005)

    Google Scholar 

  77. Gojny, F, et al., “Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content.” Compos. Sci. Technol., 64 (15) 2363–2371 (2004)

    CAS  Google Scholar 

  78. Moniruzzaman, M, Winey, KI, “Polymer Nanocomposites Containing Carbon Nanotubes.” Macromolecules, 39 (16) 5194–5205 (2006)

    CAS  Google Scholar 

  79. Harris, PJ, “Carbon Nanotube Composites.” Int. Mater. Rev., 49 (1) 31–43 (2004)

    CAS  Google Scholar 

  80. Endo, M, Strano, MS, Ajayan, PM, “Potential Applications of Carbon Nanotubes.” In: Carbon Nanotubes, pp. 13–62. Springer, Berlin (2007)

    Google Scholar 

  81. Baughman, RH, Zakhidov, AA, De Heer, WA, “Carbon Nanotubes–the Route Toward Applications.” Science, 297 (5582) 787–792 (2002)

    CAS  Google Scholar 

  82. De Volder, MF, et al., “Carbon Nanotubes: Present and Future Commercial Applications.” Science, 339 (6119) 535–539 (2013)

    Google Scholar 

  83. Bandaru, PR, “Electrical Properties and Applications of Carbon Nanotube Structures.” J. Nanosci. Nanotechnol., 7 (4–1) 1239–1267 (2007)

    CAS  Google Scholar 

  84. Peigney, A, et al., “Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes.” Carbon, 39 (4) 507–514 (2001)

    CAS  Google Scholar 

  85. Laurent, C, Flahaut, E, Peigney, A, “The Weight and Density of Carbon Nanotubes Versus the Number of Walls and Diameter.” Carbon, 48 (10) 2994–2996 (2010)

    CAS  Google Scholar 

  86. Lukes, JR, Zhong, H, “Thermal Conductivity of Individual Single-Wall Carbon Nanotubes.” J. Heat Transfer, 129 (6) 705–716 (2007)

    CAS  Google Scholar 

  87. Yu, M-F, et al., “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties.” Phys. Rev. Lett., 84 (24) 5552 (2000)

    CAS  Google Scholar 

  88. Aqel, A, et al., “Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation.” Arab. J. Chem., 5 (1) 1–23 (2012)

    CAS  Google Scholar 

  89. Yu, M-F, et al., “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load.” Science, 287 (5453) 637–640 (2000)

    CAS  Google Scholar 

  90. Khun, N, Troconis, BR, Frankel, G, “Effects of Carbon Nanotube Content on Adhesion Strength and Wear and Corrosion Resistance of Epoxy Composite Coatings on AA2024-T3.” Prog. Org. Coat., 77 (1) 72–80 (2014)

    CAS  Google Scholar 

  91. Kumar, A, et al., “Thermo-Mechanical and Anti-Corrosive Properties of MWCNT/Epoxy Nanocomposite Fabricated by Innovative Dispersion Technique.” Compos. B Eng., 113 291–299 (2017)

    CAS  Google Scholar 

  92. Kumar, A, et al., “Thermo-Mechanical and Anti-Corrosive Properties of MWCNT/Epoxy Nanocomposite Fabricated by Innovative Dispersion Technique.” Compos. B Eng., 113 291–299 (2017)

    CAS  Google Scholar 

  93. Zhdanok, S, et al., “Influence of Carbon Nanomaterials on the Properties of Paint Coatings.” J. Eng. Phys. Thermophys., 84 (6) 1242–1246 (2011)

    CAS  Google Scholar 

  94. Choi, Y-K, et al., “Processing and Characterization of Epoxy Nanocomposites Reinforced by Cup-Stacked Carbon Nanotubes.” Polymer, 46 (25) 11489–11498 (2005)

    CAS  Google Scholar 

  95. Yokozeki, T, et al., “Fracture Toughness Improvement of CFRP Laminates by Dispersion of Cup-Stacked Carbon Nanotubes.” Compos. Sci. Technol., 69 (14) 2268–2273 (2009)

    CAS  Google Scholar 

  96. Dunleavy, M., Dyke, HA, Haq, S, “Structural Health Monitoring Using Sprayable Paint Formulations.” Google Patents (2015)

  97. Beigbeder, A, et al., “Preparation and Characterisation of Silicone-Based Coatings Filled with Carbon Nanotubes and Natural Sepiolite and Their Application as Marine Fouling-Release Coatings.” Biofouling, 24 (4) 291–302 (2008)

    Google Scholar 

  98. Beigbeder, A, et al., “Marine Fouling Release Silicone/Carbon Nanotube Nanocomposite Coatings: On the Importance of the Nanotube Dispersion State.” J. Nanosci. Nanotechnol., 10 (5) 2972–2978 (2010)

    CAS  Google Scholar 

  99. Il’darkhanova, F, et al., “Development of Paint Coatings with Superhydrophobic Properties.” Prot. Met. Phys. Chem. Surf., 48 (7) 796–802 (2012)

    Google Scholar 

  100. Cui, M, et al., “Non-covalent Functionalized Multi-Wall Carbon Nanotubes Filled Epoxy Composites: Effect on Corrosion Protection and Tribological Performance.” Surf. Coat. Technol., 340 74–85 (2018)

    CAS  Google Scholar 

  101. Subramanian, AS, et al., “Synergistic Bond Strengthening in Epoxy Adhesives Using Polydopamine/MWCNT Hybrids.” Polymer, 82 285–294 (2016)

    CAS  Google Scholar 

  102. Cai, G, et al., “Polydopamine-Wrapped Carbon Nanotubes to Improve the Corrosion Barrier of Polyurethane Coating.” RSC Adv., 8 (42) 23727–23741 (2018)

    CAS  Google Scholar 

  103. Yang, S-Y, et al., “Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites.” Carbon, 49 (3) 793–803 (2011)

    CAS  Google Scholar 

  104. Yang, H, et al., “Convenient Preparation of Tunably Loaded Chemically Converted Graphene Oxide/Epoxy Resin Nanocomposites from Graphene Oxide Sheets Through Two-Phase Extraction.” J. Mater. Chem., 19 (46) 8856–8860 (2009)

    CAS  Google Scholar 

  105. Dennis, RV, et al., “Graphene Nanocomposite Coatings for Protecting Low-Alloy Steels from Corrosion.” Am. Ceram. Soc. Bull., 92 (5) 18–24 (2013)

    CAS  Google Scholar 

  106. Jackson, P, et al., “Bioaccumulation and Ecotoxicity of Carbon Nanotubes.” Chem. Cent. J., 7 (1) 154 (2013)

    Google Scholar 

  107. Bystrzejewska-Piotrowska, G, Golimowski, J, Urban, PL, “Nanoparticles: Their Potential Toxicity, Waste and Environmental Management.” Waste Manag., 29 (9) 2587–2595 (2009)

    CAS  Google Scholar 

  108. Gu, B-E, et al., “Effects of Multiwall Carbon Nanotube Addition on the Corrosion Resistance and Underwater Acoustic Absorption Properties of Polyurethane Coatings.” Prog. Org. Coat., 121 226–235 (2018)

    CAS  Google Scholar 

  109. Pham, GV, et al., “Incorporation of Fe3O4/CNTs Nanocomposite in an Epoxy Coating for Corrosion Protection of Carbon Steel.” Adv. Nat. Sci. Nanosci. Nanotechnol., 5 (3) 035016 (2014)

    Google Scholar 

  110. Yang, Y, et al., “Graphene Based Materials for Biomedical Applications.” Mater. Today, 16 (10) 365–373 (2013)

    CAS  Google Scholar 

  111. Soldano, C, Mahmood, A, Dujardin, E, “Production, Properties and Potential of Graphene.” Carbon, 48 (8) 2127–2150 (2010)

    CAS  Google Scholar 

  112. Edwards, RS, Coleman, KS, “Graphene Synthesis: Relationship to Applications.” Nanoscale, 5 (1) 38–51 (2013)

    CAS  Google Scholar 

  113. Rong, J, et al., “Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium–Sulfur (Li–S) Batteries.” Nano Lett., 14 (2) 473–479 (2013)

    Google Scholar 

  114. Berry, V, “Impermeability of Graphene and Its Applications.” Carbon, 62 1–10 (2013)

    CAS  Google Scholar 

  115. Dhand, V, et al., “A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends.” J. Nanomater., 2013 158 (2013)

    Google Scholar 

  116. Liang, J, et al., “Electromagnetic Interference Shielding of Graphene/Epoxy Composites.” Carbon, 47 (3) 922–925 (2009)

    CAS  Google Scholar 

  117. Yang, H, et al., “Covalent Functionalization of Chemically Converted Graphene Sheets via Silane and Its Reinforcement.” J. Mater. Chem., 19 (26) 4632–4638 (2009)

    CAS  Google Scholar 

  118. Yang, H, et al., “Covalent Functionalization of Polydisperse Chemically-Converted Graphene Sheets with Amine-Terminated Ionic Liquid.” Chem. Commun., 26 3880–3882 (2009)

    Google Scholar 

  119. Verdejo, R, et al., “Graphene Filled Polymer Nanocomposites.” J. Mater. Chem., 21 (10) 3301–3310 (2011)

    CAS  Google Scholar 

  120. Guo, Y, et al., “In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Study of on-the-Flame Behavior.” Ind. Eng. Chem. Res., 50 (13) 7772–7783 (2011)

    CAS  Google Scholar 

  121. Rafiee, MA, et al., “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content.” ACS Nano, 3 (12) 3884–3890 (2009)

    CAS  Google Scholar 

  122. Bao, C, et al., “Functionalized Graphene Oxide for Fire Safety Applications of Polymers: A Combination of Condensed Phase Flame Retardant Strategies.” J. Mater. Chem., 22 (43) 23057–23063 (2012)

    CAS  Google Scholar 

  123. Wang, S, et al., “Thermal Expansion of Graphene Composites.” Macromolecules, 42 (14) 5251–5255 (2009)

    CAS  Google Scholar 

  124. Das, TK, Prusty, S, “Graphene-Based Polymer Composites and Their Applications.” Polym.-Plast. Technol. Eng., 52 (4) 319–331 (2013)

    CAS  Google Scholar 

  125. Huang, G, et al., “How Can Graphene Reduce the Flammability of Polymer Nanocomposites?” Mater. Lett., 66 (1) 187–189 (2012)

    CAS  Google Scholar 

  126. Seresht, RJ, et al., “Synthesize and Characterization of Graphene Nanosheets with High Surface Area and Nano-Porous Structure.” Appl. Surf. Sci., 276 672–681 (2013)

    Google Scholar 

  127. Kuang, D, et al., “Graphene–Nickel Composites.” Appl. Surf. Sci., 273 484–490 (2013)

    CAS  Google Scholar 

  128. Novoselov, KS, et al., “A Roadmap for Graphene.” Nature, 490 (7419) 192–200 (2012)

    CAS  Google Scholar 

  129. Kousalya, AS, et al., “Graphene: An Effective Oxidation Barrier Coating for Liquid and Two-Phase Cooling Systems.” Corros. Sci., 69 5–10 (2013)

    CAS  Google Scholar 

  130. Singhbabu, Y, et al., “Corrosion-Protective Reduced Graphene Oxide Coated Cold Rolled Steel Prepared Using Industrial Setup: A Study of Protocol Feasibility for Commercial Production.” Surf. Coat. Technol., 349 119–132 (2018)

    CAS  Google Scholar 

  131. Qiu, J, Wang, S, “Enhancing Polymer Performance Through Graphene Sheets.” J. Appl. Polym. Sci., 119 (6) 3670–3674 (2011)

    CAS  Google Scholar 

  132. Zhu, Y, et al., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Adv. Mater., 22 (35) 3906–3924 (2010)

    CAS  Google Scholar 

  133. Yu, A, et al., “Graphite Nanoplatelet—Epoxy Composite Thermal Interface Materials.” J. Phys. Chem. C, 111 (21) 7565–7569 (2007)

    CAS  Google Scholar 

  134. Yavari, F, et al., “Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites.” ACS Appl. Mater. Interfaces., 2 (10) 2738–2743 (2010)

    CAS  Google Scholar 

  135. Wang, X, et al., “Covalent Functionalization of Graphene with Organosilane and Its Use as a Reinforcement in Epoxy Composites.” Compos. Sci. Technol., 72 (6) 737–743 (2012)

    CAS  Google Scholar 

  136. Grande, L, et al., “Graphene for Energy Harvesting/Storage Devices and Printed Electronics.” Particuology, 10 (1) 1–8 (2012)

    CAS  Google Scholar 

  137. Ping, J, et al., “Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using High-Performance Screen-Printed Graphene Electrode.” Biosens. Bioelectron., 34 (1) 70–76 (2012)

    CAS  Google Scholar 

  138. Xu, Y, et al., “Inkjet-Printed Energy Storage Device Using Graphene/Polyaniline Inks.” J. Power Sources, 248 483–488 (2014)

    CAS  Google Scholar 

  139. Shao, Y, et al., “Graphene Based Electrochemical Sensors and Biosensors: A Review.” Electroanalysis, 22 (10) 1027–1036 (2010)

    CAS  Google Scholar 

  140. Gadipelli, S, Guo, ZX, “Graphene-Based Materials: Synthesis and Gas Sorption, Storage and Separation.” Prog. Mater Sci., 69 1–60 (2015)

    CAS  Google Scholar 

  141. Yang, L, et al., “A High Throughput Method for Preparation of Highly Conductive Functionalized Graphene and Conductive Polymer Nanocomposites.” RSC Adv., 2 (6) 2208–2210 (2012)

    CAS  Google Scholar 

  142. Pop, E, Varshney, V, Roy, AK, “Thermal Properties of Graphene: Fundamentals and Applications.” MRS Bull., 37 (12) 1273–1281 (2012)

    CAS  Google Scholar 

  143. Yoo, BM, et al, “Graphene and Graphene Oxide and Their Uses in Barrier Polymers.” J. Appl. Polym. Sci.131 (1) (2014).

    Google Scholar 

  144. Li, X, et al., “Synthesis, Characterization, and Properties of Large-Area Graphene Films.” ECS Trans., 19 (5) 41–52 (2009)

    Google Scholar 

  145. Lee, C, et al., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene.” Science, 321 (5887) 385–388 (2008)

    CAS  Google Scholar 

  146. Sun, W, et al., “The Role of Graphene Loading on the Corrosion-Promotion Activity of Graphene/Epoxy Nanocomposite Coatings.” Compos. B Eng., 173 106916 (2019)

    CAS  Google Scholar 

  147. Christopher, G, Anbu Kulandainathan, M, Harichandran, G, “Comparative Study of Effect of Corrosion on Mild Steel with Waterborne Polyurethane Dispersion Containing Graphene Oxide Versus Carbon Black Nanocomposites.” Prog. Org. Coat., 89 199–211 (2015)

    CAS  Google Scholar 

  148. Monetta, T, Acquesta, A, Bellucci, F, “Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures.” Aerospace, 2 (3) 423–434 (2015)

    Google Scholar 

  149. Liu, S, et al., “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” J. Mater. Sci. Technol., 32 (5) 425–431 (2016)

    Google Scholar 

  150. Zhang, Z, et al., “Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by In Situ Method.” Int. J. Mol. Sci., 16 (1) 2239–2251 (2015)

    CAS  Google Scholar 

  151. Chang, C-H, et al., “Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites.” Carbon, 50 (14) 5044–5051 (2012)

    CAS  Google Scholar 

  152. Chen, C, et al., “Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings Via Incorporation of Noncovalent Functionalized Graphene.” Carbon, 114 356–366 (2017)

    CAS  Google Scholar 

  153. Sun, W, et al., “Inhibiting the Corrosion-Promotion Activity of Graphene.” Chem. Mater., 27 (7) 2367–2373 (2015)

    CAS  Google Scholar 

  154. Zhu, K., et al., “Electrochemical and Anti‐Corrosion Behaviors of Water Dispersible Graphene/Acrylic Modified Alkyd Resin Latex Composites Coated Carbon Steel.” J. Appl. Polym. Sci.134 (11) (2017).

  155. Ding, R, et al., “Study of Water Permeation Dynamics and Anti-Corrosion Mechanism of Graphene/Zinc Coatings.” J. Alloy. Compd., 748 481–495 (2018)

    CAS  Google Scholar 

  156. Zhou, S, et al., “Designing Reduced Graphene Oxide/Zinc Rich Epoxy Composite Coatings for Improving the Anticorrosion Performance of Carbon Steel Substrate.” Mater. Des., 169 107694 (2019)

    Google Scholar 

  157. Upadhyayula, VK, et al., “Screening-Level Life Cycle Assessment of Graphene-Poly(ether imide) Coatings Protecting Unalloyed Steel from Severe Atmospheric Corrosion.” ACS Sustain. Chem. Eng., 5 (3) 2656–2667 (2017)

    CAS  Google Scholar 

  158. Glover, C, et al., “In-Coating Graphene Nano-Platelets for Environmentally-Friendly Corrosion Protection of Iron.” Corros. Sci., 114 169–172 (2017)

    CAS  Google Scholar 

  159. Ding, R, et al., “Study on Evolution of Coating State and Role of Graphene in Graphene-Modified Low-Zinc Waterborne Epoxy Anticorrosion Coating by Electrochemical Impedance Spectroscopy.” J. Mater. Eng. Perform., 26 (7) 3319–3335 (2017)

    CAS  Google Scholar 

  160. Luo, X, et al., “Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity.” ACS Appl. Mater. Interfaces., 10 (21) 18400–18415 (2018)

    CAS  Google Scholar 

  161. Lin, Y-T, et al “Improvement of Mechanical Properties and Anticorrosion Performance of Epoxy Coatings by the Introduction of Polyaniline/Graphene Composite.” Surf. Coat. Technol., 374 1128–1138 (2018)

    CAS  Google Scholar 

  162. Yang, T, et al., “Enhancement of the Corrosion Resistance of Epoxy Coating by Highly Stable 3, 4, 9, 10-Perylene Tetracarboxylic Acid Functionalized Graphene.” J. Hazard. Mater., 357 475–482 (2018)

    CAS  Google Scholar 

  163. Mahmudzadeh, M. et al, “Urtica dioica Extract as a Facile Green Reductant of Graphene Oxide for UV Resistant and Corrosion Protective Polyurethane Coating Fabrication.” J. Ind. Eng. Chem.78 125–136 (2019)

    CAS  Google Scholar 

  164. Wang, M-H, et al., “Effect of Oxygen-Containing Functional Groups in Epoxy/Reduced Graphene Oxide Composite Coatings on Corrosion Protection and Antimicrobial Properties.” Appl. Surf. Sci., 448 351–361 (2018)

    CAS  Google Scholar 

  165. Zhang, WL, Choi, HJ, “Silica-Graphene Oxide Hybrid Composite Particles and Their Electroresponsive Characteristics.” Langmuir, 28 (17) 7055–7062 (2012)

    CAS  Google Scholar 

  166. Huang, H-D, et al., “High Barrier Graphene Oxide Nanosheet/Poly(vinyl alcohol) Nanocomposite Films.” J. Membr. Sci., 409 156–163 (2012)

    Google Scholar 

  167. Montes-Navajas, P, et al., “Surface Area Measurement of Graphene Oxide in Aqueous Solutions.” Langmuir, 29 (44) 13443–13448 (2013)

    CAS  Google Scholar 

  168. Mu, X, et al., “Thermal Transport in Graphene Oxide–From Ballistic Extreme to Amorphous Limit.” Sci. Rep., 4 3909 (2014)

    Google Scholar 

  169. Mitrakas, D, Danikas, M “Insulating Properties of Graphene Oxide.” Funktech. J. (10) (2016)

  170. Cao, C, et al., “High Strength Measurement of Monolayer Graphene Oxide.” Carbon, 81 497–504 (2015)

    CAS  Google Scholar 

  171. Chang, K-C, et al., “Synergistic Effects of Hydrophobicity and Gas Barrier Properties on the Anticorrosion Property of PMMA Nanocomposite Coatings Embedded with Graphene Nanosheets.” Polym. Chem., 5 (3) 1049–1056 (2013)

    Google Scholar 

  172. Jiang, F, et al., “Anti-Corrosion Behaviors of Epoxy Composite Coatings Enhanced via Graphene Oxide with Different Aspect Ratios.” Prog. Org. Coat., 127 70–79 (2019)

    CAS  Google Scholar 

  173. Rajabi, M, Rashed, G, Zaarei, D, “Assessment of Graphene Oxide/Epoxy Nanocomposite as Corrosion Resistance Coating on Carbon Steel.” Corros. Eng. Sci. Technol., 50 (7) 509–516 (2015)

    Google Scholar 

  174. Pourhashem, S, et al., “Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel.” Corros. Sci., 115 78–92 (2017)

    CAS  Google Scholar 

  175. Gudarzi, MM, Sharif, F, “Enhancement of Dispersion and Bonding of Graphene-Polymer Through Wet Transfer of Functionalized Graphene Oxide.” Express Polym. Lett.6 (12) 1017–1031 (2012)

    CAS  Google Scholar 

  176. Chen, L, et al., “A Design of Gradient Interphase Reinforced by Silanized Graphene Oxide and Its Effect on Carbon Fiber/Epoxy Interface.” Mater. Chem. Phys., 145 (1) 186–196 (2014)

    CAS  Google Scholar 

  177. Georgakilas, V, et al., “Functionalization of Graphene: Covalent and Non-covalent Approaches.” Deriv. Appl. Chem. Rev., 112 (11) 6156–6214 (2012)

    CAS  Google Scholar 

  178. Ramezanzadeh, B, et al., “Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating Through Wet Transfer of Amino Functionalized Graphene Oxide.” Corros. Sci., 103 283–304 (2016)

    CAS  Google Scholar 

  179. Ramezanzadeh, B, et al., “Covalently-Grafted Graphene Oxide Nanosheets to Improve Barrier and Corrosion Protection Properties of Polyurethane Coatings.” Carbon, 93 555–573 (2015)

    CAS  Google Scholar 

  180. Yu, Y-H, et al., “High-Performance Polystyrene/Graphene-Based Nanocomposites with Excellent Anti-Corrosion Properties.” Polym. Chem., 5 (2) 535–550 (2014)

    CAS  Google Scholar 

  181. Zheng, H., et al., “Reinforcing the Corrosion Protection Property of Epoxy Coating by Using Graphene Oxide–Poly (Urea–Formaldehyde) Composites.” Corros. Sci.123 267–277 (2017)

    CAS  Google Scholar 

  182. Mo, M, et al., “Excellent Tribological and Anti-Corrosion Performance of Polyurethane Composite Coatings Reinforced with Functionalized Graphene and Graphene Oxide Nanosheets.” RSC Adv., 5 (70) 56486–56497 (2015)

    CAS  Google Scholar 

  183. Dong, R, Liu, L, “Preparation and Properties of Acrylic Resin Coating Modified by Functional Graphene Oxide.” Appl. Surf. Sci., 368 378–387 (2016)

    CAS  Google Scholar 

  184. Pourhashem, S, et al., “Distinctive Roles of Silane Coupling Agents on the Corrosion Inhibition Performance of Graphene Oxide in Epoxy Coatings.” Prog. Org. Coat., 111 47–56 (2017)

    CAS  Google Scholar 

  185. Pourhashem, S, et al., “Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Amino-Silane Functionalized Graphene Oxide.” Surf. Coat. Technol., 317 1–9 (2017)

    CAS  Google Scholar 

  186. Qian, R, et al., “Alumina-Coated Graphene Sheet Hybrids for Electrically Insulating Polymer Composites with High Thermal Conductivity.” RSC Adv., 3 (38) 17373–17379 (2013)

    CAS  Google Scholar 

  187. Sun, C-L, et al., “The Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid Using Graphene/Size-Selected Pt Nanocomposites.” Biosens. Bioelectron., 26 (8) 3450–3455 (2011)

    CAS  Google Scholar 

  188. Yu, Z, et al., “Fabrication of Graphene Oxide–Alumina Hybrids to Reinforce the Anti-Corrosion Performance of Composite Epoxy Coatings.” Appl. Surf. Sci., 351 986–996 (2015)

    CAS  Google Scholar 

  189. Yu, Z, et al., “Preparation of Graphene Oxide Modified by Titanium Dioxide to Enhance the Anti-Corrosion Performance of Epoxy Coatings.” Surf. Coat. Technol., 276 471–478 (2015)

    CAS  Google Scholar 

  190. Ma, Y, et al., “Fabrication of Silica-Decorated Graphene Oxide Nanohybrids and the Properties of Composite Epoxy Coatings Research.” Appl. Surf. Sci., 360 936–945 (2016)

    CAS  Google Scholar 

  191. Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A Facile Route of Making Silica Nanoparticles-Covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance.” Chem. Eng. J., 303 511–528 (2016)

    CAS  Google Scholar 

  192. Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings.” Surf. Coat. Technol., 311 282–294 (2017)

    CAS  Google Scholar 

  193. Liu, J, et al., “Silane Modification of Titanium Dioxide-Decorated Graphene Oxide Nanocomposite for Enhancing Anticorrosion Performance of Epoxy Coatings on AA-2024.” J. Alloy. Compd., 744 728–739 (2018)

    CAS  Google Scholar 

  194. Liu, Y, et al., “Cost-Effective Reduced Graphene Oxide-Coated Polyurethane Sponge as a Highly Efficient and Reusable Oil-Absorbent.” ACS Appl. Mater. Interfaces., 5 (20) 10018–10026 (2013)

    CAS  Google Scholar 

  195. Caldona, EB, et al., “On the Enhanced Corrosion Resistance of Elastomer-Modified Polybenzoxazine/Graphene Oxide Nanocomposite Coatings.” React. Funct. Polym., 123 10–19 (2018)

    CAS  Google Scholar 

  196. Cui, M, et al., “Polydopamine Coated Graphene Oxide for Anticorrosive Reinforcement of Water-Borne Epoxy Coating.” Chem. Eng. J., 335 255–266 (2018)

    CAS  Google Scholar 

  197. Li, X, et al., “Fabrication of Functionalized Graphene Oxide/Maleic Anhydride Grafted Polypropylene Composite Film with Excellent Gas Barrier and Anticorrosion Properties.” J. Membr. Sci., 547 80–92 (2018)

    CAS  Google Scholar 

  198. Hayatgheib, Y, et al., “A Comparative Study on Fabrication of a Highly Effective Corrosion Protective System Based on Graphene Oxide-Polyaniline Nanofibers/Epoxy Composite.” Corros. Sci., 133 358–373 (2018)

    CAS  Google Scholar 

  199. Zhang, X, et al., “Corrosion Resistance of Organic Coating Based on Polyhedral Oligomeric Silsesquioxane-Functionalized Graphene Oxide.” Appl. Surf. Sci., 484 814–824 (2019)

    CAS  Google Scholar 

  200. Haghdadeh, P, et al., “The Role of Functionalized Graphene Oxide on the Mechanical and Anti-Corrosion Properties of Polyurethane Coating.” J. Taiwan Inst. Chem. Eng., 86 199–212 (2018)

    CAS  Google Scholar 

  201. Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Polyaniline-Cerium Oxide (PAni-CeO2) Coated Graphene Oxide for Enhancement of Epoxy Coating Corrosion Protection Performance on Mild Steel.” Corros. Sci., 137 111–126 (2018)

    CAS  Google Scholar 

  202. Taheri, NN, Ramezanzadeh, B, Mahdavian, M, “Application of Layer-by-Layer Assembled Graphene Oxide Nanosheets/Polyaniline/Zinc Cations for Construction of an Effective Epoxy Coating Anti-Corrosion System.” J. Alloys Compd., 800 532–549 (2019)

    CAS  Google Scholar 

  203. Teng, S, et al., “Zinc-Reduced Graphene Oxide for Enhanced Corrosion Protection of Zinc-Rich Epoxy Coatings.” Prog. Org. Coat., 123 185–189 (2018)

    CAS  Google Scholar 

  204. Zhang, Z, et al., “Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond.” Energy Environ. Sci., 5 (10) 8869–8890 (2012)

    CAS  Google Scholar 

  205. Hu, Y, et al., “Waste Frying Oil as a Precursor for One-Step Synthesis of Sulfur-Doped Carbon Dots with pH-Sensitive Photoluminescence.” Carbon, 77 775–782 (2014)

    CAS  Google Scholar 

  206. Namdari, P, Negahdari, B, Eatemadi, A, “Synthesis, Properties and Biomedical Applications of Carbon-Based Quantum Dots: An Updated Review.” Biomed. Pharmacother., 87 209–222 (2017)

    CAS  Google Scholar 

  207. Sun, H, et al., “Recent Advances in Graphene Quantum Dots for Sensing.” Mater. Today, 16 (11) 433–442 (2013)

    CAS  Google Scholar 

  208. Zhu, S, et al., “The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective.” Nano Res., 8 (2) 355–381 (2015)

    CAS  Google Scholar 

  209. Cui, M, et al., “Carbon Dots as New Eco-Friendly and Effective Corrosion Inhibitor.” J. Alloy. Compd., 726 680–692 (2017)

    CAS  Google Scholar 

  210. Konwar, A, et al., “Green Chitosan–Carbon Dots Nanocomposite Hydrogel Film with Superior Properties.” Carbohyd. Polym., 115 238–245 (2015)

    CAS  Google Scholar 

  211. Zhu, C, et al., “Carbon Dots as Fillers Inducing Healing/Self‐Healing and Anticorrosion Properties in Polymers.” Adv. Mater., 29 (32) 1701399 (2017)

    Google Scholar 

  212. Ramezanzadeh, B, et al., “Synthesis and Characterization of Polyaniline Tailored Graphene Oxide Quantum Dot as an Advance and Highly Crystalline Carbon-Based Luminescent Nanomaterial for Fabrication of an Effective Anti-Corrosion Epoxy System on Mild Steel.” J. Taiwan Inst. Chem. Eng., 95 369–382 (2019)

    CAS  Google Scholar 

  213. Ren, S, et al., “Effect of Nitrogen-Doped Carbon Dots on the Anticorrosion Properties of Waterborne Epoxy Coatings.” Surf. Topogr. Metrol. Prop., 6 (2) 024003 (2018)

    CAS  Google Scholar 

  214. Hu, H, et al., “Synergistic Effect of Functional Carbon Nanotubes and Graphene Oxide on the Anti-Corrosion Performance of Epoxy Coating.” Polym. Adv. Technol., 28 (6) 754–762 (2017)

    CAS  Google Scholar 

  215. Almajid, A, et al., “Effects of Graphene and CNT on Mechanical, Thermal, Electrical and Corrosion Properties of Vinylester Based Nanocomposites.” Plast. Rubber Compos., 44 (2) 50–62 (2015)

    CAS  Google Scholar 

  216. Asthana, A, et al., “Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, or Carbon Black?” ACS Appl. Mater. Interfaces., 6 (11) 8859–8867 (2014)

    CAS  Google Scholar 

  217. Yang, C, et al., “Polymer Nanocomposites for Energy Storage, Energy Saving, and Anticorrosion.” J. Mater. Chem. A, 3 (29) 14929–14941 (2015)

    CAS  Google Scholar 

  218. Grundmeier, G, Schmidt, W, Stratmann, M, “Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation.” Electrochim. Acta, 45 (15) 2515–2533 (2000)

    CAS  Google Scholar 

  219. Sørensen, PA, et al., “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 (2) 135–176 (2009)

    Google Scholar 

  220. Shi, X, et al., “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surf. Coat. Technol., 204 (3) 237–245 (2009)

    CAS  Google Scholar 

  221. Zhao, X, et al., “Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites.” Macromolecules, 43 (5) 2357–2363 (2010)

    CAS  Google Scholar 

  222. Liu, S, et al., “Effect of Graphene Nanosheets on Morphology, Thermal Stability and Flame Retardancy of Epoxy Resin.” Compos. Sci. Technol., 90 40–47 (2014)

    CAS  Google Scholar 

  223. Sagade, AA, et al., “Graphene-Based Nanolaminates as Ultra-High Permeation Barriers.” npj 2D Mater. Appl., 1 (1) 35 (2017)

    Google Scholar 

  224. Yu, F, et al., “Complete Long-Term Corrosion Protection with Chemical Vapor Deposited Graphene.” Carbon, 132 78–84 (2018)

    CAS  Google Scholar 

  225. Wan, Y-J, et al., “Grafting of Epoxy Chains onto Graphene Oxide for Epoxy Composites with Improved Mechanical and Thermal Properties.” Carbon, 69 467–480 (2014)

    CAS  Google Scholar 

  226. Wan, Y-J, et al., “Improved Dispersion and Interface in the Graphene/Epoxy Composites Via a Facile Surfactant-Assisted Process.” Compos. Sci. Technol., 82 60–68 (2013)

    CAS  Google Scholar 

  227. Smulders, S, et al., “Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice.” Toxicol. Sci., 141 (1) 132–140 (2014)

    CAS  Google Scholar 

  228. Colvin, VL, “The Potential Environmental Impact of Engineered Nanomaterials.” Nat. Biotechnol., 21 (10) 1166 (2003)

    CAS  Google Scholar 

  229. Ong, YT, et al., “A Review on Carbon Nanotubes in an Environmental Protection and Green Engineering Perspective.” Braz. J. Chem. Eng., 27 (2) 227–242 (2010)

    CAS  Google Scholar 

  230. Zhang, Y, et al., “Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells.” ACS Nano, 4 (6) 3181–3186 (2010)

    CAS  Google Scholar 

  231. Lewinski, N, Colvin, V, Drezek, R, “Cytotoxicity of Nanoparticles.” Small, 4 (1) 26–49 (2008)

    CAS  Google Scholar 

  232. Nel, A, et al., “Toxic Potential of Materials at the Nanolevel.” Science, 311 (5761) 622–627 (2006)

    CAS  Google Scholar 

  233. Magrez, A, et al., “Cellular Toxicity of Carbon-Based Nanomaterials.” Nano Lett., 6 (6) 1121–1125 (2006)

    CAS  Google Scholar 

  234. Young Park, S, et al., “Eco-Friendly Carbon-Nanodot-Based Fluorescent Paints for Advanced Photocatalytic Systems.” Sci. Rep., 5 12420 (2015)

    Google Scholar 

  235. Yang, S-T, et al., “Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents.” J. Phys. Chem. C, 113 (42) 18110–18114 (2009)

    CAS  Google Scholar 

  236. Saber, AT, et al., “Inflammatory and Genotoxic Effects of Sanding Dust Generated from Nanoparticle-Containing Paints and Lacquers.” Nanotoxicology, 6 (7) 776–788 (2012)

    CAS  Google Scholar 

  237. Saber, AT, et al., “Nanotitanium Dioxide Toxicity in Mouse Lung is Reduced in Sanding Dust from Paint.” Part. Fibre Toxicol., 9 (1) 4 (2012)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Iranian Elite National Foundation (Bonyad Melli Nokhbegan) as Allameh Tabatabaei’s Award for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alimorad Rashidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourhashem, S., Ghasemy, E., Rashidi, A. et al. A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings. J Coat Technol Res 17, 19–55 (2020). https://doi.org/10.1007/s11998-019-00275-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00275-6

Keywords

Navigation