Skip to main content
Log in

Graphene oxide/waterborne polyurethane nanocoatings: effects of graphene oxide content on performance properties

Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is a good nanofiller candidate for waterborne coatings because of its outstanding physical and mechanical properties, good dispersibility in water, and low cost relative to graphene. Here, we report on the performance of a one-part, waterborne polyurethane (WPU) nanocoating formulated with four different GO loadings ([0.4% to 2.0%] by mass). The degree of GO dispersion/adhesion was evaluated using scanning electron microscopy, laser scanning confocal microscopy, and Raman microscopy. Nanocoating performance was evaluated using a dynamic mechanical thermal analyzer for mechanical properties, a customized coulometric permeation apparatus for oxygen barrier properties, a combustion microcalorimeter for flammability, a hot disk analyzer for thermal conductivity, thermogravimetric analysis for thermal stability, and a moisture sorption analyzer for water uptake. The results show that GO sheets were well dispersed in, and have good adhesion to, WPU. At the higher mass loadings ([1.2% or 2%] by mass), GO increased the modulus and yield strength of WPU by 300% and 200%, respectively, increased the thermal conductivity by 38%, reduced the burning heat release rate (flammability) by 43%, and reduced the oxygen permeability by up to sevenfold. The presence of GO, however, increased water vapor uptake at high humidity; the moisture content of 2% mass loading GO/WPU nanocoatings at 90% RH was almost twice that of the moisture content for unfilled WPU. Overall, with the exception of water uptake at very high humidity (> 70% RH), the observed improvements in physical and mechanical properties combined with the ease of processing suggest that GO is a viable nanofiller for WPU coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Stankovich, S, Dikin, DA, Dommett, GH, Kohlhaas, KM, Zimney, EJ, Stach, EA, Piner, RD, Nguyen, ST, Ruoff, RS, “Graphene-Based Composite Materials.” Nature, 442 (7100) 282–286 (2006)

    CAS  Google Scholar 

  2. Geim, AK, Novoselov, KS, “The Rise of Graphene.” Nat. Mater., 6 (3) 183–191 (2007)

    CAS  Google Scholar 

  3. Park, S, Ruoff, RS, “Chemical Methods for the Production of Graphenes.” Nat. Nanotechnol., 4 (4) 217–224 (2009)

    CAS  Google Scholar 

  4. Sadasivuni, KK, Ponnamma, D, Thomas, S, Grohens, Y, “Evolution from Graphite to Graphene Elastomer Composites.” Prog. Polym. Sci., 39 (4) 749–780 (2014)

    CAS  Google Scholar 

  5. Zhu, Y, Murali, S, Cai, W, Li, X, Suk, JW, Potts, JR, Ruoff, RS, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Adv. Mater., 22 (35) 3906–3924 (2010)

    CAS  Google Scholar 

  6. Li, D, Kaner, RB, “Graphene-Based Materials.” Nat. Nanotechnol., 3 101 (2008)

    CAS  Google Scholar 

  7. Potts, JR, Dreyer, DR, Bielawski, CW, Ruoff, RS, “Graphene-Based Polymer Nanocomposites.” Polymer, 52 (1) 5–25 (2011)

    CAS  Google Scholar 

  8. Kim, H, Abdala, AA, Macosko, CW, “Graphene/Polymer Nanocomposites.” Macromol., 43 (16) 6515–6530 (2010)

    CAS  Google Scholar 

  9. Ammar, A, Al-Enizi, AM, AlMaadeed, MA, Karim, A, “Influence of Graphene Oxide on Mechanical, Morphological, Barrier, and Electrical Properties of Polymer Membranes.” Arab. J. Chem., 9 (2) 274–286 (2016)

    CAS  Google Scholar 

  10. Kuilla, T, Bhadra, S, Yao, D, Kim, NH, Bose, S, Lee, JH, “Recent Advances in Graphene Based Polymer Composites.” Prog. Polym. Sci., 35 (11) 1350–1375 (2010)

    CAS  Google Scholar 

  11. Bhattacharya, M, “Polymer Nanocomposites—a Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers.” Materials, 9 (4) 262 (2016)

    Google Scholar 

  12. Hu, K, Kulkarni, DD, Choi, I, Tsukruk, VV, “Graphene-Polymer Nanocomposites for Structural and Functional Applications.” Prog. Polym. Sci., 39 (11) 1934–1972 (2014)

    CAS  Google Scholar 

  13. Mohan, VB, Lau, K-t, Hui, D, Bhattacharyya, D, “Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations.” Compos. Pt. B Eng., 142 200–220 (2018)

    CAS  Google Scholar 

  14. Xu, B, Yue, S, Sui, Z, Zhang, X, Hou, S, Cao, G, Yang, Y, “What Is the Choice for Supercapacitors: Graphene or Graphene Oxide?” Energ. Environ. Sci., 4 (8) 2826–2830 (2011)

    CAS  Google Scholar 

  15. Lin, L, Peng, H, Liu, Z, “Synthesis Challenges for Graphene Industry.” Nat. Mater., 18 (6) 520–524 (2019)

    CAS  Google Scholar 

  16. Dreyer, DR, Park, S, Bielawski, CW, Ruoff, RS, “The Chemistry of Graphene Oxide.” Chem. Soc. Rev., 39 (1) 228–240 (2010)

    CAS  Google Scholar 

  17. Buchsteiner, A, Lerf, A, Pieper, J, “Water Dynamics in Graphite Oxide Investigated with Neutron Scattering.” J. Phys. Chem. B, 110 (45) 22328–22338 (2006)

    CAS  Google Scholar 

  18. Hontoria-Lucas, C, López-Peinado, AJ, López-González, JdD, Rojas-Cervantes, ML, Martín-Aranda, RM, “Study of Oxygen-Containing Groups in a Series of Graphite Oxides: Physical and Chemical Characterization.” Carbon, 33 (11) 1585–1592 (1995)

    CAS  Google Scholar 

  19. Bissessur, R, Scully, SF, “Intercalation of Solid Polymer Electrolytes into Graphite Oxide.” Solid State Ionics, 178 (11) 877–882 (2007)

    CAS  Google Scholar 

  20. Matsuo, Y, Hatase, K, Sugie, Y, “Preparation and Characterization of Poly(Vinyl Alcohol)- and Cu(OH)2−Poly(Vinyl Alcohol)-Intercalated Graphite Oxides.” Chem. Mater., 10 (8) 2266–2269 (1998)

    CAS  Google Scholar 

  21. Matsuo, Y, Tahara, K, Sugie, Y, “Structure and Thermal Properties of Poly(Ethylene Oxide)-Intercalated Graphite Oxide.” Carbon, 35 (1) 113–120 (1997)

    CAS  Google Scholar 

  22. Xu, Y, Hong, W, Bai, H, Li, C, Shi, G, “Strong and Ductile Poly (Vinyl Alcohol)/Graphene Oxide Composite Films with a Layered Structure.” Carbon, 47 (15) 3538–3543 (2009)

    CAS  Google Scholar 

  23. Wu, J, Tang, Q, Sun, H, Lin, J, Ao, H, Huang, M, Huang, Y, “Conducting Film from Graphite Oxide Nanoplatelets and Poly (Acrylic Acid) by Layer-by-Layer Self-Assembly.” Langmuir, 24 (9) 4800–4805 (2008)

    CAS  Google Scholar 

  24. Cao, Y-C, Xu, C, Wu, X, Wang, X, Xing, L, Scott, K, “A Poly (Ethylene Oxide)/Graphene Oxide Electrolyte Membrane for Low Temperature Polymer Fuel Cells.” J. Power Sources, 196 (20) 8377–8382 (2011)

    CAS  Google Scholar 

  25. Oh, SH, Kim, KR, Yun, JM, Kang, PH, “Graphene Oxide and Water-Soluble Polymer Composite Materials as Efficient Hole Transporting Layer for High Performance Organic Solar Cells.” Phys. Status. Solidi A, 212 (2) 376–381 (2015)

    CAS  Google Scholar 

  26. Guan, Y, Meyers, KP, Mendon, SK, Hao, G, Douglas, JR, Trigwell, S, Nazarenko, SI, Patton, DL, Rawlins, JW, “Ecofriendly Fabrication of Modified Graphene Oxide Latex Nanocomposites with High Oxygen Barrier Performance.” ACS Appl. Mater. Interfaces, 8 (48) 33210–33220 (2016)

    CAS  Google Scholar 

  27. Huang, H-D, Ren, P-G, Chen, J, Zhang, W-Q, Ji, X, Li, Z-M, “High Barrier Graphene Oxide Nanosheet/Poly (Vinyl Alcohol) Nanocomposite Films.” J. Membr. Sci., 409 156–163 (2012)

    Google Scholar 

  28. Wicks, ZW, Wicks, DA, Rosthauser, JW, “Two Package Waterborne Urethane Systems.” Prog. Org. Coat., 44 (2) 161–183 (2002)

    CAS  Google Scholar 

  29. Engels, HW, Pirkl, HG, Albers, R, Albach, RW, Krause, J, Hoffmann, A, Casselmann, H, Dormish, J, “Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges.” Angew. Chem. Int. Ed., 52 (36) 9422–9441 (2013)

    CAS  Google Scholar 

  30. Kuan, H-C, Chuang, W-P, Ma, C-CM, Chiang, C-L, Wu, H-L, “Synthesis and Characterization of a Clay/Waterborne Polyurethane Nanocomposite.” J. Mater. Sci., 40 (1) 179–185 (2005)

    CAS  Google Scholar 

  31. Chen, J-J, Zhu, C-F, Deng, H-T, Qin, Z-N, Bai, Y-Q, “Preparation and Characterization of the Waterborne Polyurethane Modified with Nanosilica.” J. Polym. Res., 16 (4) 375–380 (2009)

    Google Scholar 

  32. Zeng, Z, Chen, M, Jin, H, Li, W, Xue, X, Zhou, L, Pei, Y, Zhang, H, Zhang, Z, “Thin and Flexible Multi-Walled Carbon Nanotube/Waterborne Polyurethane Composites with High-Performance Electromagnetic Interference Shielding.” Carbon, 96 768–777 (2016)

    CAS  Google Scholar 

  33. Raghu, AV, Lee, YR, Jeong, HM, Shin, CM, “Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites.” Macromol. Chem. Phys., 209 (24) 2487–2493 (2008)

    CAS  Google Scholar 

  34. Hu, L, Jiang, P, Bian, G, Huang, M, Haryono, A, Zhang, P, Bao, Y, Xia, J, “Effect of Octa(Aminopropyl) Polyhedral Oligomeric Silsesquioxane (OapPOSS) Functionalized Graphene Oxide on the Mechanical, Thermal, and Hydrophobic Properties of Waterborne Polyurethane Composites.” J. Appl. Polym. Sci., 134 (6) 44440 (2017)

    Google Scholar 

  35. Hsiao, S-T, Ma, C-CM, Liao, W-H, Wang, Y-S, Li, S-M, Huang, Y-C, Yang, R-B, Liang, W-F, “Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance.” ACS Appl. Mater. Interfaces, 6 (13) 10667–10678 (2014)

    CAS  Google Scholar 

  36. Hu, J, Zhang, F, “Self-Assembled Fabrication and Flame-Retardant Properties of Reduced Graphene Oxide/Waterborne Polyurethane Nanocomposites.” J. Therm. Anal. Calorim., 118 (3) 1561–1568 (2014)

    CAS  Google Scholar 

  37. Hummers, WS, Jr, Offeman, RE, “Preparation of Graphitic Oxide.” J. Amer. Chem. Soc., 80 (6) 1339 (1958)

    CAS  Google Scholar 

  38. Park, S, An, J, Jung, I, Piner, RD, An, SJ, Li, X, Velamakanni, A, Ruoff, RS, “Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents.” Nano Lett., 9 (4) 1593–1597 (2009)

    CAS  Google Scholar 

  39. Paredes, J, Villar-Rodil, S, Martínez-Alonso, A, Tascon, J, “Graphene Oxide Dispersions in Organic Solvents.” Langmuir, 24 (19) 10560–10564 (2008)

    CAS  Google Scholar 

  40. Dimiev, AM, Alemany, LB, Tour, JM, “Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model.” ACS Nano, 7 (1) 576–588 (2012)

    Google Scholar 

  41. Celina, M, Gillen, K, “Oxygen Permeability Measurements on Elastomers at Temperatures up to 225°C.” Macromol., 38 (7) 2754–2763 (2005)

    CAS  Google Scholar 

  42. Lyon, RE, Walters, RN, Stoliarov, SI, “A Thermal Analysis Method for Measuring Polymer Flammability.” J. ASTM Int., 3 (4) 1–18 (2006)

    Google Scholar 

  43. Bentz, D, “Combination of Transient Plane Source and Slug Calorimeter Measurements to Estimate the Thermal Properties of Fire Resistive Materials.” J. Test. Eval., 35 (3) 1–5 (2006)

    Google Scholar 

  44. Faucheu, J, Wood, KA, Sung, L-P, Martin, JW, “Relating Gloss Loss to Topographical Features of a Polyvinylidene Fluoride Coating.” J. Coat. Technol. Res., 3 (1) 29–39 (2006)

    CAS  Google Scholar 

  45. Konios, D, Stylianakis, MM, Stratakis, E, Kymakis, E, “Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide.” J. Colloid Interface Sci., 430 108–112 (2014)

    CAS  Google Scholar 

  46. Lerf, A, He, H, Forster, M, Klinowski, J, “Structure of Graphite Oxide Revisited.” J. Phys. Chem. B, 102 (23) 4477–4482 (1998)

    CAS  Google Scholar 

  47. Li, D, Mueller, MB, Gilje, S, Kaner, RB, Wallace, GG, “Processable Aqueous Dispersions of Graphene Nanosheets.” Nat. Nanotechnol., 3 (2) 101–105 (2008)

    CAS  Google Scholar 

  48. Lu, W, Chou, T-W, “Analysis of the Entanglements in Carbon Nanotube Fibers Using a Self-Folded Nanotube Model.” J. Mech. Phys. Solids, 59 (3) 511–524 (2011)

    CAS  Google Scholar 

  49. Moon, IK, Lee, J, Ruoff, RS, Lee, H, “Reduced Graphene Oxide by Chemical Graphitization.” Nat. Commun., 1 1067 (2010)

    Google Scholar 

  50. Bernard, C, Nguyen, T, Pellegrin, B, Holbrook, RD, Zhao, M, Chin, J, “Fate of Graphene in Polymer Nanocomposite Exposed to UV Radiation.” J. Phys.: Conf. Ser., 304 012063/1–012063/8 (2011)

    CAS  Google Scholar 

  51. Ramanathan, T, Abdala, A, Stankovich, S, Dikin, D, Herrera-Alonso, M, Piner, R, Adamson, D, Schniepp, H, Chen, X, Ruoff, R, “Functionalized Graphene Sheets for Polymer Nanocomposites.” Nat. Nanotechnol., 3 (6) 327–331 (2008)

    CAS  Google Scholar 

  52. Rafiee, MA, Rafiee, J, Wang, Z, Song, H, Yu, Z-Z, Koratkar, N, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content.” ACS Nano, 3 (12) 3884–3890 (2009)

    CAS  Google Scholar 

  53. Liang, J, Huang, Y, Zhang, L, Wang, Y, Ma, Y, Guo, T, Chen, Y, “Molecular-Level Dispersion of Graphene into Poly (Vinyl Alcohol) and Effective Reinforcement of Their Nanocomposites.” Adv. Funct. Mater., 19 (14) 2297–2302 (2009)

    CAS  Google Scholar 

  54. Wakabayashi, K, Pierre, C, Dikin, DA, Ruoff, RS, Ramanathan, T, Brinson, LC, Torkelson, JM, “Polymer-Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement Via Solid-State Shear Pulverization.” Macromolecules, 41 (6) 1905–1908 (2008)

    CAS  Google Scholar 

  55. Bunch, JS, Verbridge, SS, Alden, JS, Van Der Zande, AM, Parpia, JM, Craighead, HG, McEuen, PL, “Impermeable Atomic Membranes from Graphene Sheets.” Nano Lett., 8 (8) 2458–2462 (2008)

    CAS  Google Scholar 

  56. Huang, H-D, Ren, P-G, Xu, J-Z, Xu, L, Zhong, G-J, Hsiao, BS, Li, Z-M, “Improved Barrier Properties of Poly (Lactic Acid) with Randomly Dispersed Graphene Oxide Nanosheets.” J. Membr. Sci., 464 110–118 (2014)

    CAS  Google Scholar 

  57. Kim, H, Miura, Y, Macosko, CW, “Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity.” Chem. Mater., 22 (11) 3441–3450 (2010)

    CAS  Google Scholar 

  58. Compton, OC, Kim, S, Pierre, C, Torkelson, JM, Nguyen, ST, “Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers.” Adv. Mater., 22 (42) 4759–4763 (2010)

    CAS  Google Scholar 

  59. Cui, Y, Kundalwal, S, Kumar, S, “Gas Barrier Performance of Graphene/Polymer Nanocomposites.” Carbon, 98 313–333 (2016)

    CAS  Google Scholar 

  60. Yoo, BM, Shin, HJ, Yoon, HW, Park, HB, “Graphene and Graphene Oxide and Their Uses in Barrier Polymers.” J. Appl. Polym. Sci., 131 (1) 39628 (2014)

    Google Scholar 

  61. Lee, D, Yang, H, Park, S, Kim, W, “Nafion/Graphene Oxide Composite Membranes for Low Humidifying Polymer Electrolyte Membrane Fuel Cell.” J. Membr. Sci., 452 20–28 (2014)

    CAS  Google Scholar 

  62. Korobov, MV, Talyzin, AV, Rebrikova, AT, Shilayeva, EA, Avramenko, NV, Gagarin, AN, Ferapontov, NB, “Sorption of Polar Organic Solvents and Water by Graphite Oxide: Thermodynamic Approach.” Carbon, 102 297–303 (2016)

    CAS  Google Scholar 

  63. Zinadini, S, Zinatizadeh, AA, Rahimi, M, Vatanpour, V, Zangeneh, H, “Preparation of a Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates.” J. Membr. Sci., 453 292–301 (2014)

    CAS  Google Scholar 

  64. Adamson, AW, Gast, AP, Physical Chemistry of Surfaces. Interscience, New York (1967)

    Google Scholar 

  65. Lerf, A, Buchsteiner, A, Pieper, J, Schöttl, S, Dekany, I, Szabo, T, Boehm, H, “Hydration Behavior and Dynamics of Water Molecules in Graphite Oxide.” J. Phys. Chem. Solids, 67 (5) 1106–1110 (2006)

    CAS  Google Scholar 

  66. Etmimi, HM, Mallon, PE, Sanderson, RD, “Polymer/Graphite Nanocomposites: Effect of Reducing the Functional Groups of Graphite Oxide on Water Barrier Properties.” Eur. Polym. J., 49 (11) 3460–3470 (2013)

    CAS  Google Scholar 

  67. Starkova, O, Chandrasekaran, S, Prado, L, Tölle, F, Mülhaupt, R, Schulte, K, “Hydrothermally Resistant Thermally Reduced Graphene Oxide and Multi-Wall Carbon Nanotube Based Epoxy Nanocomposites.” Polym. Degrad. Stab., 98 (2) 519–526 (2013)

    CAS  Google Scholar 

  68. Huang, G, Gao, J, Wang, X, Liang, H, Ge, C, “How Can Graphene Reduce the Flammability of Polymer Nanocomposites?” Mater. Lett., 66 (1) 187–189 (2012)

    CAS  Google Scholar 

  69. Higginbotham, AL, Lomeda, JR, Morgan, AB, Tour, JM, “Graphite Oxide Flame-Retardant Polymer Nanocomposites.” ACS Appl. Mater. Interfaces, 1 (10) 2256–2261 (2009)

    CAS  Google Scholar 

  70. Rahatekar, SS, Zammarano, M, Matko, S, Koziol, KK, Windle, AH, Nyden, M, Kashiwagi, T, Gilman, JW, “Effect of Carbon Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposites.” Polym. Degrad. Stab., 95 (5) 870–879 (2010)

    CAS  Google Scholar 

  71. Guo, Y, Bao, C, Song, L, Yuan, B, Hu, Y, “In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Study of on-the-Flame Behavior.” Ind. Eng. Chem. Res., 50 (13) 7772–7783 (2011)

    CAS  Google Scholar 

  72. Ghosh, S, Calizo, I, Teweldebrhan, D, Pokatilov, EP, Nika, DL, Balandin, AA, Bao, W, Miao, F, Lau, CN, “Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits.” Appl. Phys. Lett., 92 (15) 151911 (2008)

    Google Scholar 

  73. Shtein, M, Nadiv, R, Buzaglo, M, Kahil, K, Regev, O, “Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects.” Chem. Mater., 27 (6) 2100–2106 (2015)

    CAS  Google Scholar 

  74. Zhong, H, Lukes, JR, “Interfacial Thermal Resistance between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling.” Phys. Rev. B, 74 (12) 125403 (2006)

    Google Scholar 

  75. Wang, S, Tambraparni, M, Qiu, J, Tipton, J, Dean, D, “Thermal Expansion of Graphene Composites.” Macromolecules, 42 (14) 5251–5255 (2009)

    CAS  Google Scholar 

  76. Yu, A, Ramesh, P, Itkis, ME, Bekyarova, E, Haddon, RC, “Graphite Nanoplatelet − Epoxy Composite Thermal Interface Materials.” J. Phys. Chem. C, 111 (21) 7565–7569 (2007)

    CAS  Google Scholar 

  77. Cervantes-Uc, J, Espinosa, JM, Cauich-Rodriguez, J, Avila-Ortega, A, Vazquez-Torres, H, Marcos-Fernandez, A, San Román, J, “TGA/FTIR Studies of Segmented Aliphatic Polyurethanes and Their Nanocomposites Prepared with Commercial Montmorillonites.” Polym. Degrad. Stab., 94 (10) 1666–1677 (2009)

    CAS  Google Scholar 

  78. Yang, X, Li, L, Shang, S, Tao, X-m, “Synthesis and Characterization of Layer-Aligned Poly (Vinyl Alcohol)/Graphene Nanocomposites.” Polymer, 51 (15) 3431–3435 (2010)

    CAS  Google Scholar 

  79. Cheng, S, Chen, X, Hsuan, YG, Li, CY, “Reduced Graphene Oxide-Induced Polyethylene Crystallization in Solution and Nanocomposites.” Macromolecules, 45 (2) 993–1000 (2011)

    Google Scholar 

  80. Watts, P, Fearon, P, Hsu, W, Billingham, N, Kroto, H, Walton, D, “Carbon Nanotubes as Polymer Antioxidants.” J. Mater. Chem., 13 (3) 491–495 (2003)

    CAS  Google Scholar 

  81. Kodjie, SL, Li, L, Li, B, Cai, W, Li, CY, Keating, M, “Morphology and Crystallization Behavior of HDPE/CNT Nanocomposite.” J. Macromol. Sci. B, 45 (2) 231–245 (2006)

    CAS  Google Scholar 

  82. Najafi, E, Shin, K, “Radiation Resistant Polymer-Carbon Nanotube Nanocomposite Thin Films.” Colloids Surf. A: Physicochem. Eng. Aspects, 257 333–337 (2005)

    Google Scholar 

  83. Petersen, EJ, Lam, T, Gorham, JM, Scott, KC, Long, CJ, Stanley, D, Sharma, R, Alexander Liddle, J, Pellegrin, B, Nguyen, T, “Methods to Assess the Impact of UV Irradiation on the Surface Chemistry and Structure of Multiwall Carbon Nanotube Epoxy Nanocomposites.” Carbon, 69 194–205 (2014)

    CAS  Google Scholar 

  84. Nguyen, T, Petersen, EJ, Pellegrin, B, Gorham, JM, Lam, T, Zhao, M, Sung, L, “Impact of UV Irradiation on Multiwall Carbon Nanotubes in Nanocomposites: Formation of Entangled Surface Layer and Mechanisms of Release Resistance.” Carbon, 116 191–200 (2017)

    CAS  Google Scholar 

  85. Nguyen, T, Wohlleben, W, Sung, L, “Mechanisms of Aging and Release from Weathered Nanocomposites.” In: Safety of Nanomaterials Along Their Lifecycle: Release, Exposure, and Human Hazards, pp. 315–334. Taylor and Francis, New York (2014)

    Google Scholar 

  86. Lankone, RS, Wang, J, Ranville, JF, Fairbrother, DH, “Photodegradation of Polymer-CNT Nanocomposites: Effect of CNT Loading and CNT Release Characteristics.” Environ. Sci.: Nano, 4 967–982 (2017). https://doi.org/10.1039/C6EN00669H

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Rodney S. Ruoff and Dr. Sungjin Park of University of Texas at Austin, TX, for providing the graphite oxide samples, and Bayer MaterialScience LLC for providing the WPU coating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Goodwin Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: Certain commercial products and instruments are described in order to specify the experimental procedure adequately. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, C., Goodwin, D.G., Gu, X. et al. Graphene oxide/waterborne polyurethane nanocoatings: effects of graphene oxide content on performance properties. J Coat Technol Res 17, 255–269 (2020). https://doi.org/10.1007/s11998-019-00267-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00267-6

Keywords

Navigation