Skip to main content
Log in

Enhanced corrosion resistance and weathering resistance of waterborne epoxy coatings with polyetheramine-functionalized graphene oxide

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Polyetheramine (D230), an epoxy curing agent, was grafted on graphene oxide (GO) surfaces, which can be stably dispersed in a waterborne curing agent for more than 8 months. Waterborne epoxy coatings reinforced by D230-functionalized GO (DGO) were prepared on carbon steel surfaces. According to the electrochemical impedance spectra, the impedance modulus at 0.1 Hz remained at 2.2 × 109 Ω after 150 days of immersion in 3.5% NaCl electrolytes for 0.2 wt% DGO-reinforced waterborne epoxy coatings, while that of the neat epoxy coatings dropped below 1 × 107 Ω after 10 days. Besides, the addition of DGO enhanced the weathering resistance of waterborne epoxy coatings. After 60 days of the UV aging test, the yellow color index of neat epoxy coatings was 1.6 times that of 0.5 wt% DGO/epoxy coatings. The residual pencil hardness of the 0.5 wt% DGO/epoxy coatings was three levels higher than that of neat epoxy coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, SB, Ang, HM, Tade, MO, “Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of the Art.” Environ. Int., 33 (5) 694–705 (2007)

    Article  CAS  Google Scholar 

  2. Harkal, UD, Muehlberg, AJ, Edwards, PA, Webster, DC, “Novel Water-Dispersible Glycidyl Carbamate (GC) Resins and Waterborne Amine-Cured Coatings.” J. Coat. Technol. Res., 8 (6) 735–747 (2011)

    Article  CAS  Google Scholar 

  3. Yu, J, Pan, H, Zhou, X, “Preparation of Waterborne Phosphated Acrylate-Epoxy Hybrid Dispersions and Their Application as Coil Coating Primer.” J. Coat. Technol. Res., 11 (3) 361–369 (2014)

    Article  CAS  Google Scholar 

  4. Wang, Z, Han, E, Liu, F, Qian, Z, Zhu, L, “Waterborne Epoxy Nanocoatings Modified by Nanoemulsions and Nanoparticles.” J. Mater. Sci. Technol., 30 (10) 1036–1042 (2014)

    Article  Google Scholar 

  5. Ai, L, Liu, Y, Zhang, XY, Ouyang, XH, Ge, ZY, “A Facile and Template-Free Method for Preparation of Polythiophene Microspheres and Their Dispersion for Waterborne Corrosion Protection Coatings.” Synth. Met., 191 41–46 (2014)

    Article  CAS  Google Scholar 

  6. Rahman, OU, Kashif, M, Ahmad, S, “Nanoferrite Dispersed Waterborne Epoxy-Acrylate: Anticorrosive Nanocomposite Coatings.” Prog. Org. Coat., 80 77–86 (2015)

    Article  CAS  Google Scholar 

  7. Chang, K-C, Lu, H-I, Peng, C-W, Lai, M-C, Hsu, S-C, Hsu, M-H, Tsai, Y-K, Chang, C-H, Hung, W-I, Wei, Y, Yeh, J-M, “Nanocasting Technique to Prepare Lotus-Leaf-Like Superhydrophobic Electroactive Polyimide as Advanced Anticorrosive Coatings.” ACS Appl. Mater. Interfaces, 5 (4) 1460–1467 (2013)

    Article  CAS  Google Scholar 

  8. Zhang, F, Zhang, C, Song, L, Zeng, R, Li, S, Cui, H, “Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance.” J. Mater. Sci. Technol., 31 (11) 1139–1143 (2015)

    Article  CAS  Google Scholar 

  9. Ramezanzadeh, B, Haeri, Z, Ramezanzadeh, M, “A Facile Route of Making Silica Nanoparticles-Covered Graphene Oxide Nanohybrids (SiO2-GO); Fabrication of SiO2-GO/Epoxy Composite Coating with Superior Barrier and Corrosion Protection Performance.” Chem. Eng. J., 303 511–528 (2016)

    Article  CAS  Google Scholar 

  10. Conradi, M, Kocijan, A, Kek-Merl, D, Zorko, M, Verpoest, I, “Mechanical and Anticorrosion Properties of Nanosilica-Filled Epoxy-Resin Composite Coatings.” Appl. Surf. Sci., 292 432–437 (2014)

    Article  CAS  Google Scholar 

  11. Wang, N, Fu, W, Zhang, J, Li, X, Fang, Q, “Corrosion Performance of Waterborne Epoxy Coatings Containing Polyethylenimine Treated Mesoporous-TiO2 Nanoparticles on Mild Steel.” Prog. Org. Coat., 89 114–122 (2015)

    Article  CAS  Google Scholar 

  12. Cui, M, Ren, S, Chen, J, Liu, S, Zhang, G, Zhao, H, Wang, L, Xue, Q, “Anticorrosive Performance of Waterborne Epoxy Coatings Containing Water-Dispersible Hexagonal Boron Nitride (h-BN) Nanosheets.” Appl. Surf. Sci., 397 77–86 (2017)

    Article  CAS  Google Scholar 

  13. Li, J, Gan, L, Liu, Y, Mateti, S, Lei, W, Chen, Y, Yang, J, “Boron Nitride Nanosheets Reinforced Waterborne Polyurethane Coatings for Improving Corrosion Resistance and Antifriction Properties.” Eur. Polym. J., 104 57–63 (2018)

    Article  Google Scholar 

  14. Liu, S, Gu, L, Zhao, H, Chen, J, Yu, H, “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” J. Mater. Sci. Technol., 32 (5) 425–431 (2016)

    Article  Google Scholar 

  15. Gu, L, Liu, S, Zhao, H, Yu, H, “Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings.” ACS Appl. Mater. Interfaces, 7 (32) 17641–17648 (2015)

    Article  CAS  Google Scholar 

  16. Li, Y, Yang, Z, Qiu, H, Dai, Y, Zheng, Q, Li, J, Yang, J, “Self-Aligned Graphene as Anticorrosive Barrier in Waterborne Polyurethane Composite Coatings.” J. Mater. Chem. A, 2 (34) 14139–14145 (2014)

    Article  CAS  Google Scholar 

  17. Li, J, Cui, J, Yang, J, Li, Y, Qiu, H, Yang, J, “Reinforcement of Graphene and Its Derivatives on the Anticorrosive Properties of Waterborne Polyurethane Coatings.” Compos. Sci. Technol., 129 30–37 (2016)

    Article  CAS  Google Scholar 

  18. Li, H, Wen, J, Yu, R, Meng, J, Wang, C, Wang, C, Sun, S, “Facile Synthesis of a Nanocomposite Based on Graphene and ZnAl Layered Double Hydroxides as a Portable Shelf of a Luminescent Sensor for DNA Detection.” RSC Adv., 5 (13) 9341–9347 (2015)

    Article  CAS  Google Scholar 

  19. Cui, M, Ren, S, Zhao, H, Xue, Q, Wang, L, “Polydopamine Coated Graphene Oxide for Anticorrosive Reinforcement of Water-Borne Epoxy Coating.” Chem. Eng. J., 335 255–266 (2018)

    Article  CAS  Google Scholar 

  20. Chen, C, He, Y, Xiao, G, Zhong, F, Li, H, Wu, Y, Chen, J, “Synergistic Effect of Graphene Oxide@phosphate-Intercalated Hydrotalcite for Improved Anti-Corrosion and Self-Healable Protection of Waterborne Epoxy Coating in Salt Environments.” J. Mater. Chem. C, 7 (8) 2318–2326 (2019)

    Article  CAS  Google Scholar 

  21. Jiang, F, Zhao, W, Wu, Y, Wu, Y, Liu, G, Dong, J, Zhou, K, “A Polyethyleneimine-Grafted Graphene Oxide Hybrid Nanomaterial: Synthesis and Anti-Corrosion Applications.” Appl. Surf. Sci., 479 963–973 (2019)

    Article  CAS  Google Scholar 

  22. Alhumade, H, Yu, A, Elkamel, A, Simon, L, Abdala, A, “Enhanced Protective Properties and UV Stability of Epoxy/Graphene Nanocomposite Coating on Stainless Steel.” Express Polym. Lett., 10 (12) 1034–1046 (2016)

    Article  CAS  Google Scholar 

  23. Awaja, F, Pigram, PJ, “Surface Molecular Characterisation of Different Epoxy Resin Composites Subjected to UV Accelerated Degradation Using XPS and ToF-SIMS.” Polym. Degrad. Stab., 94 (4) 651–658 (2009)

    Article  CAS  Google Scholar 

  24. Ghasemi-Kahrizsangi, A, Neshati, J, Shariatpanahi, H, Akbarinezhad, E, “Improving the UV Degradation Resistance of Epoxy Coatings Using Modified Carbon Black Nanoparticles.” Prog. Org. Coat., 85 199–207 (2015)

    Article  CAS  Google Scholar 

  25. Woo, RSC, Chen, Y, Zhu, H, Li, J, Kim, J-K, Leung, CKY, “Environmental Degradation of Epoxy-Organoclay Nanocomposites Due to UV Exposure. Part 1: Photo-Degradation.” Compos. Sci. Technol., 67 (15–16) 3448–3456 (2007)

    Article  CAS  Google Scholar 

  26. Asmatulu, R, Mahmud, GA, Hille, C, Misak, HE, “Effects of UV Degradation on Surface Hydrophobicity, Crack, and Thickness of MWCNT-Based Nanocomposite Coatings.” Prog. Org. Coat., 72 (3) 553–561 (2011)

    Article  CAS  Google Scholar 

  27. Li, J, Yang, Z, Qiu, H, Dai, Y, Zheng, Q, Zheng, G-P, Yang, J, “Microwave-Assisted Simultaneous Reduction and Titanate Treatment of Graphene Oxide.” J. Mater. Chem. A, 1 (37) 11451–11456 (2013)

    Article  CAS  Google Scholar 

  28. Li, J, Lin, H, Yang, Z, Li, J, “A Method for the Catalytic Reduction of Graphene Oxide at Temperatures Below 150°C.” Carbon, 49 (9) 3024–3030 (2011)

    Article  CAS  Google Scholar 

  29. Guan, L-Z, Wan, Y-J, Gong, L-X, Yan, D, Tang, L-C, Wu, L-B, Jiang, J-X, Lai, G-Q, “Toward Effective and Tunable Interphases in Graphene Oxide/Epoxy Composites by Grafting Different Chain Lengths of Polyetheramine Onto Graphene Oxide.” J. Mater. Chem. A, 2 (36) 15058–15069 (2014)

    Article  CAS  Google Scholar 

  30. Tang, G, Jiang, Z-G, Li, X, Zhang, H-B, Hong, S, Yu, Z-Z, “Electrically Conductive Rubbery Epoxy/Diamine-Functionalized Graphene Nanocomposites with Improved Mechanical Properties.” Compos. Part B-Eng., 67 564–570 (2014)

    Article  CAS  Google Scholar 

  31. Giray, D, Balkan, T, Dietzel, B, Sarac, A-S, “Electrochemical Impedance Study on Nanofibers of Poly(m-anthranilic acid)/Polyacrylonitrile Blends.” Eur. Polym. J., 49 2645–2653 (2013)

    Article  CAS  Google Scholar 

  32. Chunsheng, L, Yiu-Wing, M, “Influence of Aspect Ratio on Barrier Properties of Polymer-Clay Nanocomposites.” Phys. Rev. Lett., 95 (8) 088303 (2005)

    Article  Google Scholar 

  33. Li, J, Ma, PC, Chow, WS, Chi, KT, Kim, JK, “Correlations Between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes.” Adv. Funct. Mater., 17 (16) 3207–3215 (2010)

    Article  Google Scholar 

  34. Rabek, JF, Polymer Photodegradation: Mechanisms and Experimental Methods. Springer, London (2012)

    Google Scholar 

  35. Paredes, JI, Villar-Rodil, S, Martínez-Alonso, A, Tascón, JMD, “Graphene Oxide Dispersions in Organic Solvents.” Langmuir, 24 (19) 10560–10564 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (U1560108, U1760119) and Science and Technology Commission of Shanghai Municipality (17511101603, 17XD1403000, 18ZR1426300, 15JC-1490700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Junhe Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shan, W., Cui, J. et al. Enhanced corrosion resistance and weathering resistance of waterborne epoxy coatings with polyetheramine-functionalized graphene oxide. J Coat Technol Res 17, 171–180 (2020). https://doi.org/10.1007/s11998-019-00252-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00252-z

Keywords

Navigation