Effect of aluminum hydroxide on the fireproofing properties of ammonium polyphosphate–pentaerythritol-based intumescent coating


A fireproof composition based on ammonium polyphosphate and pentaerythritol with a number of functional additives was developed and studied. The additives are able to form a protective char during fire exposure below the thermal decomposition temperature of the polymer composites. The decrease in the char formation temperature of the fire-protective coating provides a molar excess of ammonium polyphosphate with respect to the mole fractions of pentaerythritol and aluminum hydroxide. Introducing the latter in the composition of the flame-retardant coating also contributes to the decrease in the char formation temperature. The fire-protection coating can be used to protect various combustible materials, e.g., wood, laminates, plastics, etc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Nenachov, CA, Pimenova, VP, “Physicochemistry of Foaming Fireproof Coatings Based on Ammonium Polyphosphate.” Pozharovzrivobezopasnost [Fire Explos. Saf.], 19 (8) 11–58 (2010)

    Google Scholar 

  2. 2.

    Weil, ED, “Fire-Protective and Flame-Retardant Coatings. A State-of-the-Art Review.” J. Fire Sci., 29 (3) 259–296 (2011)

    Article  Google Scholar 

  3. 3.

    Pavlovich, AV, Vladenkov, VN, Iziumsky, VN, Kilchitskaya, SL, “Fire-Resistant Intumescent Coatings.” Lakokrasotchnaya promishlennost [Paint Varn. Ind.], 5 22–27 (2012)

    Google Scholar 

  4. 4.

    Mariappan, T, “Recent Developments of Intumescent Fire Protection Coatings for Structural Steel: A Review.” J. Fire Sci., 34 (2) 120–163 (2016)

    Article  Google Scholar 

  5. 5.

    Puri, RG, Khanna, AS, “Intumescent Coatings: A Review on Recent Progress.” J. Coat. Technol. Res., 14 (1) 1–20 (2017)

    Article  Google Scholar 

  6. 6.

    Griffin, GJ, “The Modeling of Heat Transfer Across Intumescent Polymer Coatings.” J. Fire Sci., 28 (3) 249–277 (2010)

    Article  Google Scholar 

  7. 7.

    Staggs, J, “Thermal Conductivity Estimates of Intumescent Chars by Direct Numerical Simulation.” Fire Saf., 45 (4) 228–237 (2010)

    Article  Google Scholar 

  8. 8.

    Staggs, J, Crewe, R, Butler, RA, “A Theoretical and Experimental Investigation of Intumescent Behaviour in Protective Coatings for Structural Steel.” Chem. Eng. Sci., 71 239–251 (2012)

    Article  Google Scholar 

  9. 9.

    Schaumann, P, Tabeling, F, Weisheim, W, “Heating Behaviour of Intumescent Coatings in Steel Constractions—Advanced Numerical Simulations Taking the Foaming Process into Account.” Stahlbau, 83 (9) 646–651 (2014)

    Article  Google Scholar 

  10. 10.

    Cirpici, BK, Wang, YC, Rogers, BD, et al., “A Theoretical Model for Quantifying Expantion of Intumescent Coating Under Different Heating Conditions.” Polym. Eng. Sci., 56 (7) 798–809 (2016)

    Article  Google Scholar 

  11. 11.

    Cao, K, Wu, S-RL, Wang, K-L, Yao, Z, “Kinetic Study on Surface Modification of Ammonium Polyphosphate with Melamine.” Ind. Eng. Chem. Res., 50 (14) 8402–8406 (2011)

    Article  Google Scholar 

  12. 12.

    Qu, H, Hao, J, Wu, W, Zhao, X, Jiang, S, “Optimization of Sol–Gel Coatings on the Surface of Ammonium Polyphosphate and its Application in Epoxy Resin.” J. Fire Sci., 30 (4) 357–371 (2012)

    Article  Google Scholar 

  13. 13.

    Qu, H, Wu, W, Hao, J, Wang, C, Xu, J, “Inorganic-Organic Hybrid Coating-Encapsulated Ammonium Polyphosphate and Its Flame Retardancy and Water Resistance in Epoxy Resin.” Fire Mater., 38 (3) 312–322 (2014)

    Article  Google Scholar 

  14. 14.

    Shao, ZB, Deng, C, Tan, YL, Chen, MJ, Chen, L, Wang, YZ, “Ammonium Polyphosphate Chemically Modified with Ethanolamine as an Efficient Intumescent Flame Retardant for Polypropylene.” J. Mater. Chem. A, 2 (34) 13955–13965 (2014)

    Article  Google Scholar 

  15. 15.

    Shao, Z-B, Deng, C, Tan, Y, Chen, M-J, Chen, L, Wang, Y-Z, “Flame Retardation of Polypropylene via a Novel Intumescent Flame Retardant: Ethylenediamine-Modified Ammonium Polyphosphate.” Polym. Degrad. Stab., 106 88–96 (2014)

    Article  Google Scholar 

  16. 16.

    Zheng, Z, Qiang, L, Yang, T, Wang, B, Cui, X, Wang, H, “Preparation of Microencapsulated Ammonium Polyphosphate with Carbon Source- and Blowing Agent-Containing Shell and Its Flame Retardance in Polypropylene.” J. Polym. Res., 21 (5) 1–15 (2014)

    Article  Google Scholar 

  17. 17.

    Korotkov, A, “Melamin/Monoammonium Phosphate Complex as the Polyphosphate Substitute in Flame Retardant Coatings.” J. Fire Sci., 34 (2) 89–103 (2016)

    Article  Google Scholar 

  18. 18.

    Fudang, S, Zhiming, D, Xiaomin, C, Linshuang, Z, Ye, Y, Linming, LI, “Experimental Study on Fires Extinguishing Properties of Melamine Phosphate Powders.” Proc. Eng., 84 535–542 (2014)

    Article  Google Scholar 

  19. 19.

    Zhou, S, Song, L, Wang, Z, Hu, Y, Xing, W, “Flame Retardation and Char Formation Mechanism of Intumescent Flame Retarded Polypropylene Composites Containing Melamine Phosphate and Pentaerythritol Phosphate.” Polym. Degrad. Stab., 93 (10) 1799–1806 (2008)

    Article  Google Scholar 

  20. 20.

    Ma, H, Fang, Z, “Synthesis and Carbonization Chemistry of a Phosphorous–Nitrogen Based Intumescent Flame Retardant.” Thermochim. Acta, 543 130–136 (2012)

    Article  Google Scholar 

  21. 21.

    Dittrich, B, Wartig, K-A, Mülhaupt, R, et al., “Flame Retardancy Properties of Intumescent Ammonium Poly(phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene.” Polymers, 6 (11) 2875–2895 (2014)

    Article  Google Scholar 

  22. 22.

    Dong, Y, Wang, G, Su, Q, “Influence of Nano-boron Nitride on Anti-aging Property of Waterborne Fire-Resistive Coatings.” J. Coat. Technol. Res., 11 (5) 805–815 (2014)

    Article  Google Scholar 

  23. 23.

    Wang, J, “The Protective Effects and Aging Process of the Topcoat of Intumescent Fire-Retardant Coatings Applied to the Steel Structures.” J. Coat. Technol. Res., 13 (1) 143–157 (2016)

    Article  Google Scholar 

  24. 24.

    Morys, M, Illerhaus, B, Sturm, H, et al., “Variation of Intumescent Coatings Revealing Different Modes of Action for Good Protection Performance.” Fire Technol., 53 (4) 1569–1587 (2017)

    Article  Google Scholar 

  25. 25.

    Wang, L, Hu, Y, Song, L, Yuen, RKK, “Investigation of Thermal and Combustion Properties for Intumescent Flame-Retardant Ethylene-Viny Acetate Composites Containing Ferrous Disulfide.” Ind. Eng. Chem. Res., 51 (46) 15082–15088 (2012)

    Article  Google Scholar 

  26. 26.

    Dong, Y, Wang, G, Yang, J, “Influences of Silicone Emulsion on Fire Protection of Waterborne Intumescent Fire-Resistive Coating.” J. Coat. Technol. Res., 11 (2) 231–237 (2014)

    Article  Google Scholar 

  27. 27.

    Li, H, Hu, Z, Zhang, S, Gu, X, Wang, H, Jiang, P, Zhao, Q, “Effects of Titanium Dioxide on the Flammability and Char Formation of Water-Based Coatings Containing Intumescent Flame Retardants.” Prog. Org. Coat., 78 318–324 (2015)

    Article  Google Scholar 

  28. 28.

    Duquesne, S, Bachelet, P, Bellayer, S, Bourbigot, S, Mertens, W, “Influence of Inorganic Fillers on the Fire Protection of Intumescent Coatings.” J. Fire Sci., 31 (3) 258–275 (2013)

    Article  Google Scholar 

  29. 29.

    Puri, RG, Khanna, AS, “Effect of Cenospheres on the Char Formation and Fire Protective Performance of Water-Based Intumescent Coatings on Structural Steel.” Prog. Org. Coat., 92 8–15 (2016)

    Article  Google Scholar 

  30. 30.

    Zia-ul-Mustafa, M, Ahmad, F, Megat-Yusoff, PSM, Aziz, H, “The Effect of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating.” Proc. Adv. Mater. Res., 970 328–331 (2014)

    Article  Google Scholar 

  31. 31.

    Yew, MC, RamliSulong, NH, Yew, MK, Amalina, MA, Johan, MR, “Eggshells: A Novel Bio-Filler for Intumescent Flame-Retardant Coatings.” Prog. Org. Coat., 81 116–124 (2015)

    Article  Google Scholar 

  32. 32.

    Wang, J, Wang, G, “Influences of Montmorillonite on Fire Protection, Water and Corrosion Resistance of Waterborne Intumescent Fire Retardant Coating for Steel Structure.” Surf. Coat. Technol., 239 177–184 (2014)

    Article  Google Scholar 

  33. 33.

    Han, Z, Fina, A, Malucelli, G, “Thermal Shielding Performances of Nano-structured Intumescent Coatings Containing Organo-Modified Layered Double Hydroxides.” Prog. Org. Coat., 78 504–510 (2015)

    Article  Google Scholar 

  34. 34.

    Qin, Z, Li, D, Li, Q, Yang, R, “Effect of Nano-aluminum Hydroxide on Mechanical Properties, Flame Retardancy and Combustion Behavior of Intumescent Flame Retarded Polypropylene.” Mater. Des., 89 988–995 (2016)

    Article  Google Scholar 

  35. 35.

    Morys, M, Illerhaus, B, Sturm, H, et al., “Size is Not All That Matters: Residue Thickness and Protection Performance of Intumescent Coatings Made from Different Binders.” J. Fire Sci., 35 (4) 259–283 (2017)

    Article  Google Scholar 

  36. 36.

    Rudakova, TA, Evtushenko, YM, Grigoriev, YA, et al., “Ways of Reducing the Foaming Temperature in the Ammonium Polyphosphate-Pentaerythritol System in Intumescent Systems.” Pozharovzrivobezopasnost [Fire Explos. Saf.], 3 24–29 (2015)

    Google Scholar 

  37. 37.

    Bourbigot, S, Le Bras, M, Delobel, R, “Carbonisation Mechanism Resulting from Intumescence Association with the Ammonium Polyphosphate-Pentaerythriol Fire Retardant System.” Carbon., 31 (8) 1219–1294 (1993)

    Article  Google Scholar 

  38. 38.

    Bourbigot, S, Le Bras, M, Delobel, R, “Carbonisation Mechanism Resulting from Intumescence. Part II. Association with an Ethylene Terpolymer and the Ammonium Polyphosphate-Pentaerythriol Fire Retardant System.” Carbon, 33 (3) 283–294 (1995)

    Article  Google Scholar 

  39. 39.

    Krilova, AY, “Fisher-Tropsch Synthesis Products.” Khimia Tveordogo Topliva [Solid Fuel Chem.], 48 (1) 23–37 (2014)

    Google Scholar 

  40. 40.

    Schulz, H, “Short History and Present Trends of Fischer-Tropsch Synthesis.” Appl. Catal. A Gen., 186 3–12 (1999)

    Article  Google Scholar 

  41. 41.

    Bunker, BC, Tallant, DR, Balfe, CA, et al., “Structure of Phosphorus Oxynitride Glasses.” J. Am. Chem. Soc., 70 (9) 675–681 (1987)

    Google Scholar 

  42. 42.

    Mianowsky, A, Radko, T, Siudyga, T, “The Reactivity of Cokes in Boudouard–Bell Reactions in the Context of an Ergun Model.” J. Therm. Anal. Calorim., 122 1013–1021 (2015)

    Article  Google Scholar 

  43. 43.

    Khalturinsky, NA, Rudakova, TA, “On the Mechanism of Formation of Fire-Resistant Intumescent Coatings.” Izvestia YuFU [The news of the Southern Federal University], 8 220–227 (2013)

    Google Scholar 

  44. 44.

    Crupkin, VG, Mokhin, GN, Khalturinsky, NA, “Pulsing Modes of Formation of a Multilayer Structure on the Surface of Flame Retardant Intumescent Compositions.” Chimicheskaya Fisika [Chem. Phys.], 32 (7) 65–70 (2013)

    Google Scholar 

  45. 45.

    Evtushenko, YM, Grigoriev, YA, Rudakova, TA, “Oscillation of Thermal Oxidative Degradation of Intumescent Systems Based on Ammonium Polyphosphate and Pentaerythritol” Coll. articles. 19th int. seminar “New Trends in Research of Energetic Materials”, Pardubice, Czech Republic, April 20–22, 2016, pp. 41–46

  46. 46.

    Mingming, L, Jing, L, Yuanyuan, H, et al., “Inorganic Adhesives for Robust Superwetting Surfacies.” ACS Nano, 11 (1) 1113–1119 (2017)

    Article  Google Scholar 

  47. 47.

    Camino, G, Costa, L, Trossarelli, L, “Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part V—Mechanism of Formation of Gaseous Products in the Thermal Degradation of Ammonium Polyphosphate.” Polym. Degrad. Stab., 12 (3) 203–211 (1985)

    Article  Google Scholar 

  48. 48.

    Pentaerythritol, https://en.wikipedia.org/wiki/Pentaerythritol

Download references

Author information



Corresponding author

Correspondence to Yu. M. Evtushenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evtushenko, Y.M., Grigoriev, Y.A., Rudakova, T.A. et al. Effect of aluminum hydroxide on the fireproofing properties of ammonium polyphosphate–pentaerythritol-based intumescent coating. J Coat Technol Res 16, 1389–1398 (2019). https://doi.org/10.1007/s11998-019-00221-6

Download citation


  • Intumescent coating
  • Ammonium polyphosphate
  • Pentaerythritol
  • Aluminum hydroxide
  • Fire protection
  • Char