Journal of Coatings Technology and Research

, Volume 16, Issue 2, pp 511–520 | Cite as

Synthesis and characterization of high-temperature-resistant and optically transparent polyimide coatings for potential applications in quartz optical fibers protection

  • Yaojia Zhang
  • Lingqiao Qu
  • Jingang LiuEmail author
  • Xiao Wu
  • Yan Zhang
  • Renlong Zhang
  • Haoran Qi
  • Xiumin ZhangEmail author


A series of optically transparent and colorless polyimide (CPI) coatings for quartz optical fibers (QOFs) protection were prepared by the copolymerization of two aromatic dianhydrides, 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), and 2,2′-bis(trifluoromethyl)benzidine (TFMB) by a two-step polymerization procedure via the soluble poly(amic acid) (PAA) precursors followed by thermal imidization at elevated temperatures. Various QOFs with the flexible and tough CPI coatings were successfully fabricated. Scanning electron microscopy measurements revealed that the CPI coatings tightly adhered to the quartz optical fibers without adding any adhesion promoters. The CPI coatings exhibited good optical transparency with the transmittance higher than 83% at 450 nm at a thickness of 10 μm, high lightness (L* > 93), low yellow indices (b* as low as 2.66), and low turbidity (haze as low as 0.57%). In addition, the CPI coatings exhibited good thermal and dimensional stability with glass transition temperatures (Tg) higher than 349°C and coefficients of linear thermal expansion (CTE) as low as 6.8 × 10−6/K in the range of 50–300°C.


Polyimide Coatings Quartz optical fibers Transparency Thermal properties 



Financial support from the Fundamental Research Funds of China University of Geosciences (No. 2652017345) is gratefully acknowledged.


  1. 1.
    Paschotta, R, “Optical Fiber Technology-Physical Principles and Applications of Different Types of Optical Fibers.” Optik & Photonik, 3 52–55 (2008)CrossRefGoogle Scholar
  2. 2.
    Gu, HD, Dong, HJ, Zhang, GY, He, J, Pan, HL, “Effects of Polymer Coatings on Temperature Sensitivity of Brillouin Frequency Shift within Double-Coated Fibers.” IEEE Sens. J., 13 864–869 (2013)CrossRefGoogle Scholar
  3. 3.
    Lin, Y, Gong, Y, Wu, Y, Wu, HJ, “Polyimide-Coated Fiber Bragg Grating for Relative Humidity Sensing.” Photonic Sens., 5 60–66 (2015)CrossRefGoogle Scholar
  4. 4.
    Chai, J, Liu, Q, Liu, JX, Zhang, DD, “Optical Fiber Sensors Based on Novel Polyimide for Humidity Monitoring of Building Materials.” Opt. Fiber Technol., 41 40–47 (2018)CrossRefGoogle Scholar
  5. 5.
    Lavrov, VS, Kulikov, AV, Plotnikov, MU, Efimov, ME, Varzhel, SV, “Study of Influence of the Fiber Optic Coatings Parameters in Optical Acoustic Sensitivity.” J. Phys. Confer. Ser., 735 012014 (2016)CrossRefGoogle Scholar
  6. 6.
    Bremer, K, Wollweber, M, Weigand, F, Rahlves, M, Kuhne, M, Helbig, R, Roth, B, “Fibre Optic Sensors for the Structural Health Monitoring of Building Structures.” Proc. Technol., 26 524–529 (2016)CrossRefGoogle Scholar
  7. 7.
    Kurkjian, CR, Krause, JT, Matthewson, MJ, “Strength and Fatigue of Silica Optical Fibers.” J. Lightwave Technol., 7 1360–1370 (1989)CrossRefGoogle Scholar
  8. 8.
    Wei, TS, Skutnik, BJ, “Effect of Coating on Fatigue Behavior of Optical Fiber.” J. Non-cryst. Solid, 102 100–105 (1988)CrossRefGoogle Scholar
  9. 9.
    Mrotek, JL, Matthewson, MJ, Kurkjian, CR, “Diffusion of Moisture through Optical Fiber Coatings.” J. Lightw. Technol., 19 988–993 (2001)CrossRefGoogle Scholar
  10. 10.
    Mrotek, JL, Matthewson, MJ, Kurkjian, CR, “Diffusion of Moisture through Fatigue- and Aging-Resistant Polymer Coatings on Lightguide Fibers.” J. Lightw. Technol., 21 1775–1778 (2003)CrossRefGoogle Scholar
  11. 11.
    Stolov, AA, Simoff, DA, Li, J, “Thermal Stability of Specialty Optical Fibers.” J. Lightw. Technol., 26 3443–3451 (2008)CrossRefGoogle Scholar
  12. 12.
    Brabec, L, Sysel, P, Plsek, J, Kocirik, M, Dickerson, JH, “Polyamic Acid: Nanoprecipitation and Electrophoretic Deposition on Porous Supports.” J. Coat. Technol. Res., (2017). Google Scholar
  13. 13.
    Liaw, DJ, Wang, KL, Huang, YC, Lee, KR, Lai, JY, Ha, CS, “Advanced Polyimide Materials: Synthesis, Physical Properties and Applications.” Prog. Polym. Sci., 37 907–974 (2012)CrossRefGoogle Scholar
  14. 14.
    Semjonov, SL, Sapozhnikov, DA, Erin, DY, Zabegaeva, ON, Kushtavkina, IA, Nishchev, KN, Vygodskii, YS, Dianov, EM, “High-Temperature Polyimide Coating for Optical Fibres.” Quantum Electron., 45 330–332 (2015)CrossRefGoogle Scholar
  15. 15.
    Sapozhnikov, DA, Bayminov, BA, Zabegaeva, ON, Alexeeva, DD, Semjonov, SL, Kosolapov, AF, Plastinin, EA, Buzin, MI, Vygodskii, YS, “The Influence of Organosoluble (co)Polyimides Side Functionalization and Drawing Parameters on the Optical Fibre Coatings Formation and Properties.” High Perform. Polym., 29 663–669 (2017)CrossRefGoogle Scholar
  16. 16.
    Kosolapov, AF, Plastinin, EA, Semjonov, SL, Bayminov, BA, Sapozhnikov, DA, Alekseeva, DD, Vygodskii, YS, “Advanced Polyimide Varnish for Optical Fiber Coating Fabrication.” Bull. Lebedev Phys. Inst., 4 159–162 (2017)CrossRefGoogle Scholar
  17. 17.
    Huang, L, Dyer, RS, Lago, RJ, Stolov, AA, Li, J, “Mechanical Properties of Polyimide Coated Optical Fibers at Elevated Temperatures.” Proc. SPIE, 9702 9702Y-1 (2016)Google Scholar
  18. 18.
    Alwis, L, Sun, T, Grattan, KV, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor.” IEEE Sens. J., 13 767–771 (2013)CrossRefGoogle Scholar
  19. 19.
    Huang, L, Dyer, RS, Li, L, “Fatigue Behavior of Polyimide Coated Optical Fibers at Elevated Temperatures.” Proc. SPIE, 10100 101001J (2017)CrossRefGoogle Scholar
  20. 20.
    Ni, HJ, Liu, JG, Wang, ZH, Yang, SY, “A Review on Colorless and Optically Transparent Polyimide Films: Chemistry, Process and Engineering Applications.” J. Ind. Eng. Chem., 28 16–27 (2015)CrossRefGoogle Scholar
  21. 21.
    Renoirt, JM, Zhang, C, Debliquy, M, Olivier, MG, Megret, P, Caucheteur, C, “High-Refractive Index Transparent Coatings Enhance the Optical Fiber Cladding Modes Refractometric Sensitivity.” Opt. Exp., 21 29073–29082 (2013)CrossRefGoogle Scholar
  22. 22.
    Deets GL, Hattori T, “Essentially Colorless, Transparent Polyimide Coatings and Films.” US Patent 6232428, 2001Google Scholar
  23. 23.
    Guo, YZ, Shen, DX, Ni, HJ, Liu, JG, Yang, SY, “Organosoluble Semi-Alicyclic Polyimides Derived from 3,4-Dicarboxy-1,2,3,4-Tetrahydro-6-Tert-Butyl-1-Naphthalene Succinic Dianhydride and Aromatic Diamines: Synthesis, Characterization and Thermal Degradation Investigation.” Prog. Org. Coat., 76 768–777 (2013)CrossRefGoogle Scholar
  24. 24.
    Li, Z, Song, HW, He, MH, Liu, JG, Yang, SY, “Atomic Oxygen-Resistant and Transparent Polyimide Coatings from [3,5-bis(3-Aminophenoxy)Phenyl]Diphenylphosphine Oxide and Aromatic Dianhydrides: Preparation and Characterization.” Prog. Org. Coatings, 75 49–58 (2012)CrossRefGoogle Scholar
  25. 25.
    Guo, YZ, Song, HW, Zhai, L, Liu, JG, Yang, SY, “Synthesis and Characterization of Novel Semi-Alicyclic Polyimides from Methyl-Substituted Tetralin Dianhydride and Aromatic Diamines.” Polym. J., 44 718–723 (2012)CrossRefGoogle Scholar
  26. 26.
    Wubbeler, G, Acosta, JC, Elster, C, “Evaluation of Uncertainties for CIELAB Color Coordinates.” Color Res. Appl., 42 564–570 (2017)CrossRefGoogle Scholar
  27. 27.
    Licari, JJ, Hughes, LA, Handbook of Polymer Coatings for Electronics, 2nd ed., p. 370. Noyes Publications, New Jesery (1990)Google Scholar
  28. 28.
    Koning, C, Lansbergen, A, Koldijk, F, Hendriks, H, Papegaaij, A, Smabers, R, Buijsen, P, Gehrels, C, Reuvers, B, Herrema, J, “Novel Renewable Alkyd Resins Based on Imide Structures.” J. Coat. Technol. Res., 14 (4) 783–789 (2017)CrossRefGoogle Scholar
  29. 29.
    Wu, Z, Zhang, A, Shen, D, Leland, M, Harris, FW, Cheng, SZD, “The Crystal Structure and Thermal Shrinkage Properties of Aromatic Polyimide Fibers.” J. Therm. Anal., 46 719–731 (1996)CrossRefGoogle Scholar
  30. 30.
    Liu, JG, Nakamura, Y, Shibasaki, Y, Ando, S, Ueda, M, “High Refractive Index Polyimides Derived from 2,7-Bis(4-Aminophenylenesulfanyl)Thianthrene and Aromatic Dianhydrides.” Macromolecules, 40 4614–4620 (2007)CrossRefGoogle Scholar
  31. 31.
    Liu, JG, Ueda, M, “High Refractive Index Polymers: Fundamental Research and Practical Applications.” J. Mater. Chem., 19 8907–8919 (2009)CrossRefGoogle Scholar
  32. 32.
    Hasegawa, M, “Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion.” Polymers, 9 520 (2017)CrossRefGoogle Scholar
  33. 33.
    Jewell, JM, “Thermooptic Coefficients of Some Standard Reference Material Glassed.” J. Am. Ceram. Soc., 74 1689–1691 (1991)CrossRefGoogle Scholar
  34. 34.
    Hasegawa, M, Matano, T, Shindo, Y, Sugimura, T, “Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization. 2. In-plane Orientation.” Macromolecules, 29 7897–7909 (1996)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingPeople’s Republic of China
  2. 2.School of Electrical EngineeringBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations