Skip to main content
Log in

Photosensitive ink formulation and inkjet printing on flexible PET substrate

Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Photochromic materials whose color can reversibly change under visible light exposure are good candidates for many applications like photooptical sensors, smart inks and paints, displays or optical storage. Among these materials, inorganic Ag:TiO2 films have been proven to be stable over time and to exhibit multicolor photochromism leading to potential high-performance systems. However, their fabrication processes are often based on laboratory equipment not adapted to industrialization and usually involve thermal treatments not compatible with soft materials, which limit the application range. The present paper proposes an alternative way to produce photochromic Ag:TiO2 films compatible with industrialization and with soft substrates. An aqueous ink, made of a dispersion of TiO2 nanoparticles and silver ions, was formulated from a commercial TiO2 suspension and a silver salt by adding a thickener and a surfactant to satisfy inkjet process requirements. The inkjet printing process was optimized on polyethylene terephthalate substrates to form thin inorganic films after IR annealing. Such a process can be adapted to any kind of substrates, in particular flexible and non-heat-resistant substrates, and can be scaled at the industrial level. The photochromic behavior of the fabricated films was finally assessed successfully after an activation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ohko, Y, et al., “Multicolour Photochromism of TiO2 Films Loaded with Silver Nanoparticles.” Nat. Mater., 2 29–31 (2003)

    Article  Google Scholar 

  2. Han, R, Zhang, X, Wang, L, Dai, R, Liu, Y, “Size-Dependent Photochromism-Based Holographic Storage of Ag/TiO2 Nanocomposite Film.” Appl. Phys. Lett., 98 221905 (2011)

    Article  Google Scholar 

  3. Qiao, Q, et al., “Formation of Holographic Fringes on Photochromic Ag/TiO2 Nanocomposite Films.” Appl. Phys. Lett., 94 074104 (2009)

    Article  Google Scholar 

  4. Kazuma, E, Tatsuma, T, “Photoinduced Reversible Changes in Morphology of Plasmonic Ag Nanorods on TiO2 and Application to Versatile Photochromism.” Chem. Commun., 48 1733–1735 (2012)

    Article  Google Scholar 

  5. Liu, Z, et al., “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.” ACS Nano, 11 5031–5040 (2017)

    Article  Google Scholar 

  6. Naoi, K, Ohko, Y, Tatsuma, T, “Switchable Rewritability of Ag–TiO2 Nanocomposite Films with Multicolor Photochromism.” Chem Commun, (2005). https://doi.org/10.1039/b416139d

    Google Scholar 

  7. Crespo-Monteiro, N, et al., “Reversible and Irreversible Laser Microinscription on Silver-Containing Mesoporous Titania Films.” Adv. Mater., 22 3166–3170 (2010)

    Article  Google Scholar 

  8. Kawahara, K, Suzuki, K, Ohko, Y, Tatsuma, T, “Electron Transport in Silver-Semiconductor Nanocomposite Films Exhibiting Multicolor Photochromism.” Phys. Chem. Chem. Phys., 7 3851 (2005)

    Article  Google Scholar 

  9. Dahmen, C, Sprafke, AN, Dieker, H, Wuttig, M, von Plessen, G, “Optical and Structural Changes of Silver Nanoparticles During Photochromic Transformation.” Appl. Phys. Lett., 88 011923 (2006)

    Article  Google Scholar 

  10. Nadar, L, et al., “Multicolor Photochromism of Silver-Containing Mesoporous Films of Amorphous or Anatase TiO2.” J. Nanoparticle Res., 15 2048 (2013)

    Article  Google Scholar 

  11. Crespo-Monteiro, N, Destouches, N, Fournel, T, “Updatable Random Texturing of Ag/TiO2 Films for Goods Authentication.” Appl. Phys. Express, 5 075803 (2012)

    Article  Google Scholar 

  12. Wang, X, Yu, JC, Ho, C, Mak, AC, “A Robust Three-Dimensional Mesoporous Ag/TiO2 Nanohybrid Film.” Chem. Commun., (2005). https://doi.org/10.1039/b500605h

    Google Scholar 

  13. Diop, DK, et al., “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates.” Adv. Mater. Interfaces, 2 1500134 (2015)

    Article  Google Scholar 

  14. Diop, DaoudaK, et al., “Spectral and Color Changes of Ag/TiO2 Photochromic Films Deposited on Diffusing Paper and Transparent Flexible Plastic Substrates.” Appl. Spectrosc., 71 1271–1279 (2017)

    Article  Google Scholar 

  15. Tricot, F, et al., “Photochromic Ag:TiO2 Thin Films on PET Substrate.” RSC Adv, 4 61305–61312 (2014)

    Article  Google Scholar 

  16. Tricot, F, et al., “Flexible Photochromic Ag:TiO2 Thin Films Fabricated by Ink-Jet and Flexography Printing Processes.” RSC Adv., 5 84560–84564 (2015)

    Article  Google Scholar 

  17. Alberius, PCA, Frindell, KL, Kramer, EJ, Stucky, GD, Chmelka, BF, “General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films.” Chem. Mater., 14 3284–3294 (2002)

    Article  Google Scholar 

  18. Crepaldi, EL, et al., “Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2.” J. Am. Chem. Soc., 125 9770–9786 (2003)

    Article  Google Scholar 

  19. Yu, JC, Wang, X, Fu, X, “Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films.” Chem. Mater., 16 1523–1530 (2004)

    Article  Google Scholar 

  20. Nadar, L. “Surfaces fonctionnalisées à base de nanoparticules métalliques pour l’optique et la photonique”. (Thesis Université Jean Monnet-Saint-Etienne, 2011).

  21. Wang, J, Li, H, Li, H, Zuo, C, Wang, H, “Thermal Stability and Optimal Photoinduced Hydrophilicity of Mesoporous TiO2 Thin Films.” J. Phys. Chem. C, 116 9517–9525 (2012)

    Article  Google Scholar 

  22. Tohge, N, Shinmou, K, Minami, T, “Effects of UV-Irradiation on the Formation of Oxide Thin Films from Chemically Modified Metal-Alkoxides.” J. Sol-Gel Sci. Technol., 2 581–585 (1994)

    Article  Google Scholar 

  23. de Galo, J, Soler-Illia, AA, Crepaldi, EduardoL, Grosso, David, Sanchez, Clement, “Block Copolymer-Templated Mesoporous Oxides.” Curr. Opin. Colloid Interface Sci., 8 109–126 (2003)

    Article  Google Scholar 

  24. Mozaffari, N, Mohammadi, MR, Faghihi Sani, MA, “Development of Block Copolymer-Templated Crack-Free Mesoporous Anatase-TiO2 Film: Tailoring Sol–Gel and EISA Processing Parameters and Photovoltaic Characteristics.” J. Mater. Sci. Mater. Electron., 26 1543–1553 (2015)

    Article  Google Scholar 

  25. Kominami, H, et al., “Novel Synthesis of Microcrystalline Titanium(IV) Oxide Having High Thermal Stability and Ultra-high Photocatalytic Activity: Thermal Decomposition of Titanium(IV) Alkoxide in Organic Solvents.” Catal. Lett., 46 235–240 (1997)

    Article  Google Scholar 

  26. Kipphan, H, et al., Handbook of Print Media, 140. Springer, Berlin (2000)

    Google Scholar 

  27. Briggs, D, Rance, DG, Kendall, CR, Blythe, AR, “Surface Modification of Poly(ethylene terephthalate) by Electrical Discharge Treatment.” Polymer, 21 895–900 (1980)

    Article  Google Scholar 

  28. Jang, D, Kim, D, Moon, J, “Influence of Fluid Physical Properties on Ink-Jet Printability.” Langmuir, 25 2629–2635 (2009)

    Article  Google Scholar 

  29. Fujifilm. Dimatix Materials Printer DMP-2800 Series User Manual. 1–150 (2010).

  30. Loffredo, F, et al., “Polyethylenimine/N-doped Titanium Dioxide Nanoparticle Based Inks for Ink-Jet Printing Applications.” J. Appl. Polym. Sci., 122 3630–3636 (2011)

    Article  Google Scholar 

  31. Jiang, J, Oberdörster, G, Biswas, P, “Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies.” J. Nanoparticle Res., 11 77–89 (2009)

    Article  Google Scholar 

  32. Suttiponparnit, K, et al., “Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties.” Nanoscale Res Lett., 6 27 (2010)

    Google Scholar 

  33. M’pandou, A, Siffert, B, “Polyethyleneglycol Adsorption at the TiO2 H2O Interface: Distortion of Ionic Structure and Shear Plane Position.” Colloids Surf., 24 159–172 (1987)

    Article  Google Scholar 

  34. Arsov, LD, Kormann, C, Plieth, W, “Electrochemical Synthesis and In Situ Raman Spectroscopy of Thin Films of Titanium Dioxide.” J. Raman Spectrosc., 22 573–575 (1991)

    Article  Google Scholar 

  35. Ma, R, et al., “Carbon-Nanotube/Silver Networks in Nitrile Butadiene Rubber for Highly Conductive Flexible Adhesives.” Adv. Mater., 24 3344–3349 (2012)

    Article  Google Scholar 

  36. Crespo-Monteiro, N, et al., “One-Step Microstructuring of TiO2 and Ag–TiO2 Films by Continuous Wave Laser Processing in the UV and Visible Ranges.” J. Phys. Chem. C, 116 26857–26864 (2012)

    Article  Google Scholar 

  37. Zhao, XU, Li, Z, Chen, Y, Shi, L, Zhu, Y, “Solid-Phase Photocatalytic Degradation of Polyethylene Plastic Under UV and Solar Light Irradiation.” J. Mol. Catal. Chem., 268 101–106 (2007)

    Article  Google Scholar 

  38. Kamrannejad, MM, Hasanzadeh, A, Nosoudi, N, Mai, L, Babaluo, AA, “Photocatalytic Degradation of Polypropylene/TiO2 Nano-composites.” Mater. Res., 17 1039–1046 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by ANR in the framework of Project PHOTOFLEX No. 12-NANO-0006. This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). The authors also thank CLYM (www.clym.fr) for access to the Jeol 2010F TEM. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tricot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tricot, F., Vocanson, F., Chaussy, D. et al. Photosensitive ink formulation and inkjet printing on flexible PET substrate. J Coat Technol Res 16, 113–123 (2019). https://doi.org/10.1007/s11998-018-0105-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0105-0

Keywords

Navigation