Skip to main content

Advertisement

Log in

Natural compounds as potential algaecides for waterborne paints

  • Brief Communication
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

To eliminate and prevent the formation of phototrophic biofilms on painted walls, chemicals are added to paints. These chemicals, in general, also have toxic effects on the environment. Plants synthesize secondary metabolites which have antimicrobial properties and that may be a sustainable alternative to traditional biocides. In this work, algal species isolated from biofilms formed on deteriorated painted surfaces were taxonomically identified. Observations with the optical microscope revealed the presence of mixed biofilms composed of algae belonging to the Cyanophyta, Chlorophyta, and Streptophyta divisions. The algaecide effect of natural compounds of vegetal origin such as anisole, eugenol, guaiacol, and thymol was evaluated by the microatmosphere technique. Growth inhibition of phototrophic organisms was obtained with thymol in all the concentrations used. Eugenol and guaiacol showed a total growth inhibition at the highest concentration assayed (300 μmol cm−2) and a decrease in growth at 40 μmol cm−2, while anisole did not exert any inhibitory action at the assayed concentrations. Due to these results, eugenol, thymol, and guaiacol were incorporated in an exterior waterborne paint at a concentration of 2%. Samples painted with these formulations were not colonized by algae, indicating that these compounds could be used as biocides in paint formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Gaylarde, PM, Gaylarde, CC, “Algae and Cyanobacteria on Painted Buildings in Latin America.” Int. Biodeter. Biodegrad., 46 93–97 (2000)

    Article  Google Scholar 

  2. Gaylarde, CC, Morton, LHG, Loh, K, Shirakawa, MA, “Biodeterioration of External Architectural Paint Films—A Review.” Int. Biodeterior. Biodegrad., 65 1189–1198 (2011)

    Article  Google Scholar 

  3. O’Neill, TB, “Succession and Interrelationships of Microorganisms on Painted Surfaces.” Int. Biodeterior., 24 373–379 (1988)

    Article  Google Scholar 

  4. Barberousse, H, Lombardo, RJ, Tell, G, Couté, A, “Factors Involved in the Colonisation of Building Façades by Algae and Cyanobacteria in France.” Biofouling, 22 69–77 (2006)

    Article  Google Scholar 

  5. Gómez de Saravia, S, Battistoni, P, Guiamet, P, “Phototrophic Biofilms on Exterior Brick Substrate.” Res. Rev. BioSci., 11 (2) 10 (2016)

    Google Scholar 

  6. Bold, H, Wynne, M, Introduction to the Algae. Prentice Hall Inc, Upper Saddle River (1978)

    Google Scholar 

  7. Saiz-Jimenez, C, “Biodeterioration vs Biodegradation: the Role of Microorganisms in the Removal of Pollutants Deposited on Historic Buildings.” Int. Biodeterior. Biodegrad., 40 225–232 (1997)

    Article  Google Scholar 

  8. Sasso, S, Miller, AZ, Rogerio-Candelera, MA, Cubero, B, Coutinho, ML, Scrano, L, Bufo, S, “Potential of Natural Biocides for Biocontrolling Phototrophic Colonization on Limestone.” Int. Biodeterior. Biodegrad., 107 102–110 (2016)

    Article  Google Scholar 

  9. Cappitelli, F, Salvadori, O, Albanese, D, Villa, F, Sorlini, C, “Cyanobacteria Cause Black Staining of the National Museum of the American Indian Building (Washington, DC, USA).” Biofouling, 28 257–266 (2012)

    Article  Google Scholar 

  10. Burkhardt, M, Zuleeg, S, Vonbank, R, Schmid, P, Hean, S, Lamani, X, Bester, K, Boller, M, “Leaching of Additives from Construction Materials to Urban Storm Water Runoff.” Wat. Sci. Technol., 63 1974–1982 (2011)

    Article  Google Scholar 

  11. Bollmann, U, Vollertsen, J, Carmeliet, J, Bester, K, “Dynamics of Biocide Emissions from Buildings in a Suburban Stormwater Catchment—Concentrations, Mass Loads and Emission Processes.” Wat. Res., 56 66–76 (2014)

    Article  Google Scholar 

  12. Burkhardt, M, Kupper, T, Hean, S, Haag, R, Schmid, P, Kohler, M, Boller, M, “Biocides Used in Building Materials and Their Leaching Behavior to Sewer Systems.” Wat. Sci. Technol., 56 63–67 (2007)

    Article  Google Scholar 

  13. Jančula, D, Maršalek, B, “Critical Review of Actually Available Chemical Compounds for Prevention and Management of Cyanobacterial Blooms.” Chemosphere, 85 1415–1422 (2011)

    Article  Google Scholar 

  14. Borrego, S, Gómez de Saravia, S, Valdes, O, Vivar, I, Battistoni, P, Guiamet, P, “Biocidal Activity of Two Essential Oils on Fungi that Cause Degradation of Paper Documents.” IJCS, 7 369–380 (2016)

    Google Scholar 

  15. Shao, J, Li, R, Lepo, JE, Gu, J, “Potential for Control of Harmful Cyanobacterial Blooms Using Biologically Derived Substances: Problems and Prospects.” J. Environ. Manag., 125 149–155 (2013)

    Article  Google Scholar 

  16. Cimanga, K, Kambu, K, Tona, L, Apers, S, Bruyne, T, Hermans, N, Totte, J, Pieters, L, Vlietinck, A, “Correlation Between Chemical Composition and Antibacterial Activity of Essential Oils of Some Aromatic Medicinal Plants Growing in the Democratic Republic of Congo.” J. Ethnopharmacol., 79 213–220 (2002)

    Article  Google Scholar 

  17. Dalleau, S, Cateau, E, Berges, T, Berjeaud, J, Imbert, C, “In Vitro Activity of Terpenes Against Candida Biofilms.” Int. J. Antimicrob. Agents, 6 572–576 (2008)

    Article  Google Scholar 

  18. Rojo, L, Barcenilla, J, Vázquez, B, González, R, San Román, J, “Intrinsically Antibacterial Materials Based on Polymeric Derivatives of Eugenol for Biomedical Applications.” Biomacromolecules, 9 2530–2535 (2008)

    Article  Google Scholar 

  19. Liu, H, Lepoittevin, B, Roddier, C, Guerineau, V, Bech, L, Herry, J, Bellon-Fontaine, M, Roger, P, “Facile Synthesis and Promising Antibacterial Properties of a New Guaiacol-Based Polymer.” Polymer, 52 1908–1916 (2011)

    Article  Google Scholar 

  20. Wattanasatcha, A, Rengpipat, S, Wanichwecharungruang, S, “Thymol Nanospheres as an Effective Anti-bacterial Agent.” Int. J. Pharmacol., 434 360–365 (2012)

    Article  Google Scholar 

  21. Pérez, M, García, M, Blustein, G, “Evaluation of Low Copper Content Antifouling Paints Containing Natural Phenolic Compounds as Bioactive Additives.” Mar. Environ. Res., 109 177–184 (2015)

    Article  Google Scholar 

  22. Rippka, R, Deruelles, J, Waterbury, JB, Herdman, M, Stanier, RY, “Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria.” J. Gen. Microbiol., 111 1–61 (1979)

    Google Scholar 

  23. Komárek, J, Fott, B, “Chlorophyceae, Ordnung Chlorococcales”. In: Elster H.-J-, Ohle W. (eds.) Die Binnengewässer. Band 16, 7 Teil, 1 Hälfte. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (1983)

  24. Komárek, J, Anagnostidis, K, “Cyanoprokaryota Part 1 Chroococcales.” In: Ettl, H, Gärtner, G, Heynig H, Mollehauer (eds.) Süβwasserflora von Mitteleuropa 19/1. G. Fischer. Jena, Stuttgart, Lübeck, Ulm (2000).

  25. Komárek, J, Anagnostidis, K, “Cyanoprokaryota Part 2 Oscillatoriales.” In: Büdel, B, Krienitz, L, Gärtner, G, Schagerl, M (eds.) Süβwasserflora von Mitteleuropa 19/2. Elsevier, München (2005).

  26. Delespaul, Q, de Billerbeck, VG, Roques, CG, Michel, G, Marquier-Viñuales, C, Bessière, JM, “The Antifungal Activity of Essential Oils as Determined by Different Screening Methods.” JEOR, 12 256–266 (2000)

    Article  Google Scholar 

  27. Zucconi, L, Gagliardi, M, Isola, D, Onofri, S, Andaloro, MC, Pelosi, C, Pogliani, P, Selbmann, L, “Biodeterioration Agents Dwelling in or on the Wall Paintings of the Holy Saviour’s Cave (Vallerano, Italy).” Int. Biodeterior. Biodegrad., 70 40–46 (2012)

    Article  Google Scholar 

  28. Kordali, S, Cakir, A, Ozer, H, Cakmakci, R, Esdek, M, Mete, E, “Antifungal, Phytotoxic and Insecticidal Properties of Essential Oil Isolated from Turkish Origanum acutidens and Its Three Components, Carvacrol, Thymol and p-Cymene.” Biores. Technol., 99 8788–8795 (2008)

    Article  Google Scholar 

  29. Trombetta, D, Castelli, F, Sarpietro, MG, Venuti, V, Cristani, M, Daniele, C, Saija, A, Mazzanti, G, Bisignano, G, “Mechanisms of Antibacterial Action of Three Monoterpenes.” Antimicrob. Agents Chemother., 49 2474–2478 (2005)

    Article  Google Scholar 

  30. Nanasombat, S, Lohasupthawee, P, “Antibacterial Activity of Crude Ethanolic Extracts and Essential Oils of Spices Against Salmonella and Other Enterobacteria.” KMITL-STJ, 5 527–538 (2005)

    Google Scholar 

  31. Louie, G, Baiga, T, Bowman, M, Koeduka, T, Taylor, J, Spassova, S, Pichersky, E, Noel, J, “Structure and Reaction Mechanism of Basil Eugenol Synthase.” PLoS ONE, 2 e993 (2007)

    Article  Google Scholar 

  32. Darvishi, E, Omidi, M, Bushehri, A, Golshani, A, Smith, M, “The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast.” PLoS ONE, 8 e76028 (2013)

    Article  Google Scholar 

  33. Tang, KH, Wee, YC, Ho, KK, “Laboratory Evaluation of Biocides for the Control of Trentepohlia odorata.” Int. Biodeterior., 21 5–10 (1985)

    Google Scholar 

  34. Rana, IS, Rana, AS, Rajak, RC, “Evaluation of Antifungal Activity in Essential Oil of the Syzygium aromaticum (L.) by Extraction, Purification and Analysis of Its Main Component Eugenol.” Braz. J. Microbiol., 42 1269–1277 (2011)

    Article  Google Scholar 

  35. Sand, W, “Microbial Mechanisms of Deterioration of Inorganic Substrates—A General Mechanistic Overview.” Int. Biodeterior. Biodegrad., 40 183–190 (1997)

    Article  Google Scholar 

  36. Morton, LHG, Gaylarde, CC, “Deteriogenic Biofilms on Buildings and Their Control.” Biofouling, 14 59–74 (1999)

    Article  Google Scholar 

  37. Allsopp D, Seal K, Gaylarde C, “Introduction to Biodeterioration,” Chap. 3. 261. In: Biodeterioration of Refined and Processed Materials: Paints, second ed., vol 262, pp. 78–85. Cambridge University Press, Cambridge (2004).

  38. Kappock PS, “Biocides: Wet State and Dry Film.” Chap. 8. In: Florio, JJ, Miller, DJ (eds.) Handbook of Coating Additives, p. 271. Marcel Dekker, New York (2004).

Download references

Acknowledgments

The authors are grateful to the National University of La Plata Project 11/I201, CONICET PIP No. 00314 and CICBA 833/14 for the Grants received to finance this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra G. Gómez de Saravia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez de Saravia, S.G., Rastelli, S.E., Blustein, G. et al. Natural compounds as potential algaecides for waterborne paints. J Coat Technol Res 15, 1191–1200 (2018). https://doi.org/10.1007/s11998-018-0099-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0099-7

Keywords

Navigation