Journal of Coatings Technology and Research

, Volume 15, Issue 6, pp 1391–1399 | Cite as

Hybrid multilayer thin-film fabrication by atmospheric deposition process for enhancing the barrier performance

  • Srikanth Jagadeesan
  • Jong Hwan Lim
  • Kyung Hyun Choi
  • Yang Hoi Doh


In this paper, a multilayer barrier thin film, based on polyvinylidene difluoride (PVDF)–silicon dioxide (SiO2), has been fabricated on a PET substrate through a novel method of joint fabrication techniques. The inorganic SiO2 thin film was deposited using a roll-to-roll atmospheric atomic layer deposition system (R2R-AALD), while the organic PVDF layer was deposited on the surface of SiO2 through the electrohydrodynamic atomization (EHDA) technique. The multilayer barrier thin films exhibited very good surface morphology, chemical composition, and optical properties. The obtained values for arithmetic surface roughness and water contact angle of the as-developed multilayer barrier thin film were 3.88 nm and 125°, respectively. The total thickness of the multilayer barrier thin film was 520 nm with a high optical transmittance value (85–90%). The water vapor transmission rate (WVTR) of the barrier thin film was ~ 0.9 × 10−2 g m−2 day−1. This combination of dual fabrication techniques (R2R-AALD and EHDA) for the development of multilayer barrier thin films is promising for gas barrier applications.


Atmospheric deposition Hybrid multilayer barrier thin film Roll-to-roll atmospheric atomic layer deposition (R2R-AALD) Organic–inorganic Electrohydrodynamic atomization (EHDA) 



This research was supported by the 2017 scientific promotion program funded by Jeju National University.


  1. 1.
    Nathan, A, Ahnood, A, Cole, MT, Lee, S, Suzuki, Y, Hiralal, P, Bonaccorso, F, Hasan, T, Garcia-Gancedo, L, Dyadyusha, A, “Flexible Electronics: The Next Ubiquitous Platform.” Proceedings of the IEEE, 100 (Special Centennial Issue) 1486–1517 (2012)CrossRefGoogle Scholar
  2. 2.
    Logothetidis, S, “Flexible Organic Electronic Devices: Materials, Process and Applications.” Mater. Sci. Eng. B, 152 (1–3) 96–104 (2008)CrossRefGoogle Scholar
  3. 3.
    Zaki, T, Short-Channel Organic Thin-Film Transistors: Fabrication, Characterization, Modeling and Circuit Demonstration. Springer, Berlin (2015)CrossRefGoogle Scholar
  4. 4.
    Forrest, SR, “The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic.” Nature, 428 (6986) 911 (2004)CrossRefGoogle Scholar
  5. 5.
    Garner, S, Glaesemann, S, Li, X, “Ultra-Slim Flexible Glass for Roll-to-Roll Electronic Device Fabrication.” Appl. Phys. A, 116 (2) 403–407 (2014)CrossRefGoogle Scholar
  6. 6.
    Yu, D, Yang, Y-Q, Chen, Z, Tao, Y, Liu, Y-F, “Recent Progress on Thin-Film Encapsulation Technologies for Organic Electronic Devices.” Opt. Commun., 362 43–49 (2016)CrossRefGoogle Scholar
  7. 7.
    Charton, C, Schiller, N, Fahland, M, Holländer, A, Wedel, A, Noller, K, “Development of High Barrier Films on Flexible Polymer Substrates.” Thin Solid Films, 502 (1–2) 99–103 (2006)CrossRefGoogle Scholar
  8. 8.
    Kim, LH, Jeong, YJ, An, TK, Park, S, Jang, JH, Nam, S, Jang, J, Kim, SH, Park, CE, “Optimization of Al2O3/TiO2 Nanolaminate Thin Films Prepared with Different Oxide Ratios, for Use in Organic Light-Emitting Diode Encapsulation, via Plasma-Enhanced Atomic Layer Deposition.” Phys. Chem. Chem. Phys., 18 (2) 1042–1049 (2016)CrossRefGoogle Scholar
  9. 9.
    Tseng, M-H, Yu, H-H, Chou, K-Y, Jou, J-H, Lin, K-L, Wang, C-C, Tsai, F-Y, “Low-Temperature Gas-Barrier Films by Atomic Layer Deposition for Encapsulating Organic Light-Emitting Diodes.” Nanotechnology, 27 (29) 295706 (2016)CrossRefGoogle Scholar
  10. 10.
    Yong-Qiang, Y, Yu, D, “Optimization of Al2O3 Films Deposited by ALD at Low Temperatures for OLED Encapsulation.” J. Phys. Chem. C, 118 (32) 18783–18787 (2014)CrossRefGoogle Scholar
  11. 11.
    Meyer, J, Görrn, P, Bertram, F, Hamwi, S, Winkler, T, Johannes, HH, Weimann, T, Hinze, P, Riedl, T, Kowalsky, W, “Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas-Diffusion Barriers—A Strategy for Reliable Encapsulation of Organic Electronics.” Adv. Mater., 21 (18) 1845–1849 (2009)CrossRefGoogle Scholar
  12. 12.
    Lee, BG, Skarp, J, Malinen, V, Li, S, Choi, S, Branz, HM, “Excellent passivation and low reflectivity Al2O3/TiO2 bilayer coatings for n-wafer silicon solar cells.” Proc. Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 2012Google Scholar
  13. 13.
    Fan, C-L, Shang, M-C, Li, B-J, Lin, Y-Z, Wang, S-J, Lee, W-D, Hung, B-R, “Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process.” Materials, 8 (4) 1704–1713 (2015)CrossRefGoogle Scholar
  14. 14.
    Kim, H-K, Cho, C-K, “Transparent SiON/Ag/SiON Multilayer Passivation Grown on a Flexible Polyethersulfone Substrate Using a Continuous Roll-to-Roll Sputtering System.” Nanoscale Res. Lett., 7 (1) 69 (2012)CrossRefGoogle Scholar
  15. 15.
    Kim, BJ, Han, D, Yoo, S, Im, SG, “Organic/Inorganic Multilayer Thin Film Encapsulation via Initiated Chemical Vapor Deposition and Atomic Layer Deposition for Its Application to Organic Solar Cells.” Korean J. Chem. Eng., 34 (3) 892–897 (2017)CrossRefGoogle Scholar
  16. 16.
    Chang, HJ, Park, BM, Lee, SH, Jo, YG, Kim, JM, Jung, JJ, Pyee, J, “Preparation and Characterization of Organic Light Emitting Devices Using Hybrid Encapsulation Materials Properties of OLED Using Hybrid Encapuslaton Materials.” 2015 International Conference on Proc. Electronics Packaging and iMAPS All Asia Conference (ICEP-IACC), 2015Google Scholar
  17. 17.
    Han, D-S, Choi, D-K, Park, J-W, “Al2O3/TiO2 Multilayer Thin Films Grown by Plasma Enhanced Atomic Layer Deposition for Organic Light-Emitting Diode Passivation.” Thin Solid Films, 552 155–158 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, G, Wu, H, Chen, C, Wang, T, Yue, J, Liu, C, “Transparent and Flexible Capacitors Based on Nanolaminate Al2O3/TiO2/Al2O3.” Nanoscale Res. Lett., 10 (1) 76 (2015)CrossRefGoogle Scholar
  19. 19.
    Han, L, Chen, Z, “High-Quality Thin SiO2 Films Grown by Atomic Layer Deposition Using Tris (dimethylamino) silane (TDMAS) and Ozone.” ECS J. Solid State Sci. Technol., 2 (11) N228–N236 (2013)CrossRefGoogle Scholar
  20. 20.
    Mei-Li, Z, Ya-Bo, F, Qiang, C, Yuan-Jing, G, “Deposition of SiOx barrier films by O2/TMDSO RF-PECVD.” Chin. Phys., 16 (4) 1101 (2007)CrossRefGoogle Scholar
  21. 21.
    Wuu, D, Lo, W, Chang, L, Horng, R, “Properties of SiO2-Like Barrier Layers on Polyethersulfone Substrates by Low-Temperature Plasma-Enhanced Chemical Vapor Deposition.” Thin Solid Films, 468 (1–2) 105–108 (2004)CrossRefGoogle Scholar
  22. 22.
    Yoon, KH, Kim, HS, Han, KS, Kim, SH, Lee, Y-EK, Shrestha, NK, Song, SY, Sung, MM, “Extremely High Barrier Performance of Organic-Inorganic Nanolaminated Thin Films for Organic Light-Emitting Diodes.” ACS Appl. Mater. Interfaces, 9 (6) 5399–5408 (2017)CrossRefGoogle Scholar
  23. 23.
    Duan, Y, Wang, X, Duan, Y-H, Yang, Y-Q, Chen, P, Yang, D, Sun, F-B, Xue, K-W, Hu, N, Hou, J-W, “High-Performance Barrier Using a Dual-Layer Inorganic/Organic Hybrid Thin-Film Encapsulation for Organic Light-Emitting Diodes.” Org. Electron., 15 (9) 1936–1941 (2014)CrossRefGoogle Scholar
  24. 24.
    Han, YC, Kim, E, Kim, W, Im, H-G, Bae, B-S, Choi, KC, “A Flexible Moisture Barrier Comprised of a SiO2-Embedded Organic–Inorganic Hybrid Nanocomposite and Al2O3 for Thin-Film Encapsulation of OLEDs.” Org. Electron., 14 (6) 1435–1440 (2013)CrossRefGoogle Scholar
  25. 25.
    Xiao, W, Yu, D, Bo, SF, Qiang, YY, Dan, Y, Ping, C, Hui, DY, Yi, Z, “The Improvement of Thin Film Barrier Performances of Organic–Inorganic Hybrid Nanolaminates Employing a Low-Temperature MLD/ALD Method.” RSC Adv., 4 (83) 43850–43856 (2014)CrossRefGoogle Scholar
  26. 26.
    Li, M, Gao, D, Li, S, Zhou, Z, Zou, J, Tao, H, Wang, L, Xu, M, Peng, J, “Realization of Highly-Dense Al2O3 Gas Barrier for Top-Emitting Organic Light-Emitting Diodes by Atomic Layer Deposition.” RSC Adv., 5 (127) 104613–104620 (2015)CrossRefGoogle Scholar
  27. 27.
    Song, E, Lee, YK, Li, R, Li, J, Jin, X, Yu, KJ, Xie, Z, Fang, H, Zhong, Y, Du, H, “Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants.” Adv. Funct. Mater., 28 (12) 1702284 (2017)CrossRefGoogle Scholar
  28. 28.
    Grover, R, Srivastava, R, Kamalasanan, M, Mehta, D, “Multilayer Thin Film Encapsulation for Organic Light Emitting Diodes.” RSC Adv., 4 (21) 10808–10814 (2014)CrossRefGoogle Scholar
  29. 29.
    Jo, CI, Ko, J, Yin, Z, Kim, Y-J, Kim, YS, “Solvent-Free and Highly Transparent SiO2 Nanoparticle–Polymer Composite with an Enhanced Moisture Barrier Property.” Ind. Eng. Chem. Res., 55 (35) 9433–9439 (2016)CrossRefGoogle Scholar
  30. 30.
    Kim, H, Ban, W, Kwon, S, Yong, S, Chae, H, Jung, D, “Effects of Plasma Polymer Films and Their Deposition Powers on the Barrier Characteristics of the Multilayer Encapsulation for Organic Devices.” J. Nanosci. Nanotechnol., 16 (5) 5389–5393 (2016)CrossRefGoogle Scholar
  31. 31.
    Li, Y-S, Tsai, C-H, Kao, S-H, Wu, I-W, Chen, J-Z, Wu, C-I, Lin, C-F, Cheng, I-C, “Single-Layer Organic–Inorganic-Hybrid Thin-Film Encapsulation for Organic Solar Cells.” J. Phys. D Appl. Phys., 46 (43) 435502 (2013)CrossRefGoogle Scholar
  32. 32.
    Chen, Z, Wang, H, Wang, X, Chen, P, Liu, Y, Zhao, H, Zhao, Y, Duan, Y, “Low-Temperature Remote Plasma Enhanced Atomic Layer Deposition of ZrO2/Zircone Nanolaminate Film for Efficient Encapsulation of Flexible Organic Light-Emitting Diodes.” Sci. Rep., 7 40061 (2017)CrossRefGoogle Scholar
  33. 33.
    Ico, G, Showalter, A, Bosze, W, Gott, SC, Kim, BS, Rao, MP, Myung, NV, Nam, J, “Size-Dependent Piezoelectric and Mechanical Properties of Electrospun P (VDF-TrFE) Nanofibers for Enhanced Energy Harvesting.” J. Mater. Chem. A, 4 (6) 2293–2304 (2016)CrossRefGoogle Scholar
  34. 34.
    Yuan, F, Yang, Y, Wang, R, Chen, D, “Poly(vinylidene fluoride) Grafted Polystyrene (PVDF-g-PS) Membrane Based on In Situ Polymerization for Solvent Resistant Nanofiltration.” RSC Adv., 7 (53) 33201–33207 (2017)CrossRefGoogle Scholar
  35. 35.
    Massey, LK, Permeability Properties of Plastics and Elastomers: A Guide to Packaging and Barrier Materials. William Andrew, Norwich (2003)Google Scholar
  36. 36.
    Chung, M, Lee, D, “Electrical Properties of Polyvinylidene Fluoride Films Prepared by the High Electric Field Applying Method.” J. Korean Phys. Soc., 38 (2) 117–122 (2001)Google Scholar
  37. 37.
    Benz, M, Euler, WB, Gregory, OJ, “The Role of Solution Phase Water on the Deposition of Thin Films of Poly(vinylidene fluoride).” Macromolecules, 35 (7) 2682–2688 (2002)CrossRefGoogle Scholar
  38. 38.
    Li, M, Katsouras, I, Piliego, C, Glasser, G, Lieberwirth, I, Blom, PW, de Leeuw, DM, “Controlling the Microstructure of Poly(vinylidene-fluoride) (PVDF) Thin Films for Microelectronics.” J. Mater. Chem. C, 1 (46) 7695–7702 (2013)CrossRefGoogle Scholar
  39. 39.
    ur Rehman, MM, Kim, KT, Na, KH, Choi, KH, “Atmospheric Deposition Process for Enhanced Hybrid Organic–Inorganic Multilayer Barrier Thin Films for Surface Protection.” Appl. Surf. Sci., 422 273–282 (2017)CrossRefGoogle Scholar
  40. 40.
    Duraisamy, N, Muhammad, NM, Hyun, M-T, Choi, K-H, “Structural and Electrical Properties of P3HT: PCBM/PEDOT: PSS Thin Films Deposited Through Electrohydrodynamic Atomization Technique.” Mater. Lett., 92 227–230 (2013)CrossRefGoogle Scholar
  41. 41.
    Rietveld, IB, Kobayashi, K, Yamada, H, Matsushige, K, “Electrospray Deposition, Model, and Experiment: Toward General Control of Film Morphology.” J. Phys. Chem. B, 110 (46) 23351–23364 (2006)CrossRefGoogle Scholar
  42. 42.
    Bottino, A, Capannelli, G, Comite, A, “Preparation and Characterization of Novel Porous PVDF-ZrO2 Composite Membranes.” Desalination, 146 (1–3) 35–40 (2002)CrossRefGoogle Scholar
  43. 43.
    Cao, X, Ma, J, Shi, X, Ren, Z, “Effect of TiO2 Nanoparticle Size on the Performance of PVDF Membrane.” Appl. Surf. Sci., 253 (4) 2003–2010 (2006)CrossRefGoogle Scholar
  44. 44.
    Yan, L, Li, YS, Xiang, CB, “Preparation of Poly(vinylidene fluoride) (PVDF) Ultrafiltration Membrane Modified By Nano-sized Alumina (Al2O3) and Its Antifouling Research.” Polymer, 46 (18) 7701–7706 (2005)CrossRefGoogle Scholar
  45. 45.
    Yu, L-Y, Xu, Z-L, Shen, H-M, Yang, H, “Preparation and Characterization of PVDF–SiO2 Composite Hollow Fiber UF Membrane by Sol–Gel Method.” J. Membr. Sci., 337 (1–2) 257–265 (2009)CrossRefGoogle Scholar
  46. 46.
    Choi, D-w, Chung, K-B, Park, J-S, “Rapid Vapor Deposition SiO2 Thin Film Deposited at a Low Temperature Using Tris(tert-pentoxy) Silanol and Trimethyl-Aluminum.” Mater. Chem. Phys., 142 (2–3) 614–618 (2013)CrossRefGoogle Scholar
  47. 47.
    Siddiqui, GU, Rehman, MM, Choi, KH, “Enhanced Resistive Switching in All-Printed, Hybrid and Flexible Memory Device Based on Perovskite ZnSnO3 via PVOH Polymer.” Polymer, 100 102–110 (2016)CrossRefGoogle Scholar
  48. 48.
    Rehman, MM, Siddiqui, GU, Gul, JZ, Kim, S-W, Lim, JH, Choi, KH, “Resistive Switching in All-Printed, Flexible and Hybrid MoS2-PVA Nanocomposite based Memristive Device Fabricated by Reverse Offset.” Sci. Rep., 6 36195 (2016)CrossRefGoogle Scholar
  49. 49.
    Rehman, MM, Yang, B-S, Yang, Y-J, Karimov, KS, Choi, KH, “Effect of Device Structure on the Resistive Switching Characteristics of Organic Polymers Fabricated Through All Printed Technology.” Curr. Appl. Phys., 17 (4) 533–540 (2017)CrossRefGoogle Scholar
  50. 50.
    Rehman, MM, Siddiqui, GU, Doh, YH, Choi, KH, “Highly Flexible and Electroforming Free Resistive Switching Behavior of Tungsten Disulfide Flakes Fabricated Through Advanced Printing Technology.” Semicond. Sci. Technol., 32 (9) 095001 (2017)CrossRefGoogle Scholar
  51. 51.
    Rehman, MM, Siddiqui, GU, Kim, S, Choi, KH, “Resistive Switching Effect in the Planar Structure of All-Printed, Flexible and Rewritable Memory Device Based on Advanced 2D Nanocomposite of Graphene Quantum Dots and White Graphene Flakes.” J. Phys. D Appl. Phys., 50 (33) 335104 (2017)CrossRefGoogle Scholar
  52. 52.
    Choi, KH, Kim, HB, Ali, K, Sajid, M, Siddiqui, GU, Chang, DE, Kim, HC, Ko, JB, Dang, HW, Doh, YH, “Hybrid Surface Acoustic Wave-Electrohydrodynamic Atomization (SAW-EHDA) for the Development of Functional Thin Films.” Sci. Rep., 5 15178 (2015)CrossRefGoogle Scholar
  53. 53.
    Zhang, W, Shi, Z, Zhang, F, Liu, X, Jin, J, Jiang, L, “Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water-in-Oil Emulsions with High Flux.” Adv. Mater., 25 (14) 2071–2076 (2013)CrossRefGoogle Scholar
  54. 54.
    Dong, Z-Q, Ma, X-H, Xu, Z-L, Gu, Z-Y, “Superhydrophobic Modification of PVDF–SiO2 Electrospun Nanofiber Membranes for Vacuum Membrane Distillation.” RSC Adv., 5 (83) 67962–67970 (2015)CrossRefGoogle Scholar
  55. 55.
    Dameron, AA, Davidson, SD, Burton, BB, Carcia, PF, McLean, RS, George, SM, “Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition.” J. Phys. Chem. C, 112 (12) 4573–4580 (2008)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  • Srikanth Jagadeesan
    • 1
  • Jong Hwan Lim
    • 2
  • Kyung Hyun Choi
    • 2
  • Yang Hoi Doh
    • 1
  1. 1.Department of Advanced Convergence Technology and ScienceJeju National UniversityJejuKorea
  2. 2.Department of Mechatronics EngineeringJeju National UniversityJejuKorea

Personalised recommendations