Skip to main content
Log in

Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Waterborne polyurethane/polydopamine (PDA) functional reduced graphene oxide (WPU/PDRGO) nanocomposites were prepared by in situ emulsification method. The presence of a PDA layer and the partial reduction of GO by PDA were confirmed by FTIR, XRD, Raman spectra, and TGA. It was found that the interfacial PDA layers facilitated the dispersion of the PDRGO sheets in the WPU matrix and enhanced mechanical properties of the WPU matrix. The resulting WPU/PDRGO nanocomposite coatings show excellent electrical conductivity (9.9 × 10−6–1.1 × 10−4 S cm−1) corresponding to a PDRGO content of 1–16 wt%. The obtained waterborne polyurethane/graphene nanocomposite dispersions are promising for anticorrosion, antistatic, conductive, and electromagnetic interference shielding coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguirresarobe, RH, Martin, L, Aramburu, N, Irusta, L, Fernandez-Berridi, MJ, “Coumarin Based Light Responsive Healable Waterborne Polyurethanes.” Prog. Org. Coat, 99 314–321 (2016)

    Article  Google Scholar 

  2. Xiao, Y, Fu, X, Zhang, Y, Liu, Z, Jiang, L, Lei, J, “Preparation of Waterborne Polyurethanes Based on the Organic Solvent-Free Process.” Green Chem., 18 412–416 (2016)

    Article  Google Scholar 

  3. Santamaria-Echart, A, Fernandes, I, Saralegi, A, Costa, MRPFN, Barreiro, F, Corcuera, MA, Eceiza, A, “Synthesis of Waterborne Polyurethane-urea Dispersions with Chain Extension Step in Homogeneous and Heterogeneous Media.” J. Colloid Interf. Sci., 476 184–192 (2016)

    Article  Google Scholar 

  4. Yu, F, Cao, L, Meng, Z, Lin, N, Liu, XY, “Crosslinked Waterborne Polyurethane with High Waterproof Performance.” Polym. Chem., 7 3913 (2016)

    Article  Google Scholar 

  5. Breucker, L, Landfester, K, Taden, A, “Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.” ACS Appl. Mater. Interfaces, 7 24641–24648 (2015)

    Article  Google Scholar 

  6. Santamaria-Echart, A, Arbelaiz, A, Saralegi, A, Fernández-d’Arlas, B, Eceiza, A, Corcuera, MA, “Relationship Between Reagents Molar Ratio and Dispersion Stability and Film Properties of Waterborne Polyurethanes.” Colloids Surf. A: Physicochem. Eng. Aspects, 482 554–561 (2015)

    Article  Google Scholar 

  7. Sardon, H, Irusta, L, Aguirresarobe, RH, Fernández-Berridi, MJ, “Polymer/Silica Nanohybrids by Means of Tetraethoxysilane Sol-Gelcondensation onto Waterborne Polyurethane Particles.” Prog. Org. Coat, 77 1436–1442 (2014)

    Article  Google Scholar 

  8. Sun, D, Miao, X, Zhang, K, Kim, H, Yuan, Y, “Triazole-Forming Waterborne Polyurethane Composites Fabricated with Silane Coupling Agent Functionalized Nano-Silica.” J. Colloid Interf Sci, 361 483–490 (2011)

    Article  Google Scholar 

  9. Lee, HT, Lin, LH, “Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and its Interlayer Ions on the Morphology and Physical and Electrical Properties.” Macromolecules, 39 6133–6141 (2006)

    Article  Google Scholar 

  10. Liao, L, Li, X, Wang, Y, Fu, H, Li, Y, “Effects of Surface Structure and Morphology of Nanoclays on the Properties of Jatropha Curcas Oil-Based Waterborne Polyurethane/Clay Nanocomposites.” Ind. Eng. Chem. Res., 55 11689–11699 (2016)

    Article  Google Scholar 

  11. Santamaria-Echart, A, Ugarte, L, Arbelaiz, A, Gabilondo, N, Corcuera, MA, Eceiza, A, “Two Different Incorporation Routes of Cellulose Nanocrystals in Waterborne Polyurethane Nanocomposites.” Eur. Polym. J., 76 99–109 (2016)

    Article  Google Scholar 

  12. Cao, X, Dong, H, Li, CM, “New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane.” Biomacromolecules, 8 899–904 (2007)

    Article  Google Scholar 

  13. Wu, Z, Wang, H, Xue, M, Tian, X, Zhou, H, Ye, X, Zheng, K, Cui, Z, “Preparation of Carbon Nanotubes/Waterborne Polyurethane Composites with the Emulsion Particles Assisted Dispersion of Carbon Nanotubes.” Compos. Sci. Technol., 114 50–56 (2015)

    Article  Google Scholar 

  14. Hajializadeh, S, Barikani, M, Bellah, SM, “Synthesis and Characterization of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposites, Polymer International.” Polym. Int., 66 1074–1083 (2017)

    Article  Google Scholar 

  15. Nanda, AK, Wicks, DA, Madbouly, SA, Otaigbe, JU, “Nanostructured Polyurethane/POSS Hybrid Aqueous Dispersions Prepared by Homogeneous Solution Polymerization.” Macromolecules, 39 7037–7043 (2006)

    Article  Google Scholar 

  16. Turri, S, Levi, M, “Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes.” Macromolecules, 38 5569–5574 (2005)

    Article  Google Scholar 

  17. Yousefi, N, Gudarzi, MM, Zheng, Q, Aboutalebi, SH, Sharif, F, Kim, JK, “Self-alignment and High Electrical Conductivity of Ultralarge Graphene Oxide-Polyurethane Nanocomposites.” J. Mater. Chem., 22 12709–12717 (2012)

    Article  Google Scholar 

  18. Shahabadi, SIS, Kong, J, Lu, X, “Aqueous-Only, Green Route to Self-Healable, UV-Resistant, and Electrically Conductive Polyurethane/Graphene/Lignin Nanocomposite Coatings.” ACS Sustainable Chem. Eng., 5 3148–3157 (2017)

    Article  Google Scholar 

  19. Król, P, Król, B, Pielichowska, K, Špírková, M, “Composites Prepared from the Waterborne Polyurethane Cationomers-Modified Graphene. Part I. Synthesis, Structure, and Physicochemical Properties.” Colloid Polym. Sci., 293 421–431 (2015)

    Article  Google Scholar 

  20. Hsiao, ST, Ma, CCM, Tien, HW, Liao, WH, Wang, YS, Li, SM, Huang, YC, “Using a Non-covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-borne Polyurethane Composite.” Carbon, 60 57–66 (2013)

    Article  Google Scholar 

  21. Zhang, J, Zhang, CQ, Madbouly, SA, “In Situ Polymerization of Bio-based Thermosetting Polyurethane/Graphene Oxide Nanocomposites.” J. Appl. Polym. Sci., 132 41751 (2015)

    Google Scholar 

  22. Arzac, A, Leal, GP, de la Cal, JC, Tomovska, R, “Water-Borne Polymer/Graphene Nanocomposites.” Macromol. Mater. Eng., 302 1600315 (2017)

    Article  Google Scholar 

  23. Tkalya, E, Ghislandi, M, Alekseev, A, Koning, C, Loos, J, “Latex-Based Concept for the Preparation of Graphene-Based Polymer Nanocomposites.” J. Mater. Chem., 20 3035–3039 (2010)

    Article  Google Scholar 

  24. Arzac, A, Leal, GP, Fajgar, R, Tomovska, R, “Comparison of the Emulsion Mixing and In Situ Polymerization Techniques for Synthesis of Water-Borne Reduced Graphene Oxide/Polymer Composites: Advantages and Drawbacks.” Part. Part. Syst. Charact., 31 143–151 (2014)

    Article  Google Scholar 

  25. Konkena, B, Vasudevan, S, “Covalently Linked, Water-Dispersible, Cyclodextrin: Reduced-Graphene Oxide Sheets.” Langmuir, 28 12432–12437 (2012)

    Article  Google Scholar 

  26. Stankovich, S, Dikin, DA, Dommett, GHB, Kohlhaas, KM, Zimney, EJ, Stach, EA, Piner, RD, Nguyen, SBT, Ruoff, RS, “Graphene-Based Composite Materials.” Nature, 442 282–286 (2006)

    Article  Google Scholar 

  27. Wang, X, Hu, Y, Song, L, Yang, H, Xing, W, Lu, H, “In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties.” J. Mater. Chem., 21 4222–4227 (2011)

    Article  Google Scholar 

  28. Tang, XZ, Mu, C, Zhu, W, Yan, X, Hu, X, Yang, J, “Flexible Polyurethane Composites Prepared by Incorporation of Polyethylenimine-Modified Slightly Reduced Graphene Oxide.” Carbon, 98 432–440 (2016)

    Article  Google Scholar 

  29. Compton, OC, Dikin, DA, Putz, KW, Brinson, LC, Nguyen, ST, “Electrically Conductive “Alkylated” Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper.” Adv. Mater., 22 892–896 (2010)

    Article  Google Scholar 

  30. Lee, H, Dellatore, SM, Miller, WM, Messersmith, PB, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings.” Science, 318 426–430 (2007)

    Article  Google Scholar 

  31. Yang, L, Phua, SL, Toh, CL, Zhang, L, Ling, H, Chang, M, Zhou, D, Dong, Y, Lu, X, “Polydopamine-Coated Graphene as Multifunctional Nanofillers in Polyurethane.” RSC Adv., 3 6377–6385 (2013)

    Article  Google Scholar 

  32. Li, W, Shang, T, Yang, W, Yang, H, Lin, S, Jia, X, Cai, Q, Yang, X, “Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.” ACS Appl. Mater. Interfaces, 8 13037–13050 (2016)

    Article  Google Scholar 

  33. Chen, K, Tian, Q, Tian, C, Yan, G, Cao, F, Liang, S, Wang, X, “Mechanical Reinforcement in Thermoplastic Polyurethane Nanocomposite Incorporated with Polydopamine Functionalized Graphene Nanoplatelet.” Ind. Eng. Chem. Res., 56 11827–11838 (2017)

    Article  Google Scholar 

  34. Tian, Y, Cao, Y, Wang, Y, Yang, W, Feng, J, “Realizing Ultrahigh Modulus and High Strength of Macroscopic Graphene Oxide Papers Through Crosslinking of Mussel-Inspired Polymers.” Adv. Mater., 25 2980–2983 (2013)

    Article  Google Scholar 

  35. Hummers, WS, Jr., Offeman, RE, “Preparation of Graphitic Oxide.” J. Am. Chem. Soc., 80 1339 (1958)

    Article  Google Scholar 

  36. Xu, LQ, Yang, WJ, Neoh, KG, Kang, ET, Fu, GD, “Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets.” Macromolecules, 43 8336–8339 (2010)

    Article  Google Scholar 

  37. Wang, X, Song, L, Yang, H, Xing, W, Kandola, B, Hu, Y, “Simultaneous Reduction and Surface Functionalization of Graphene Oxide with POSS for Reducing Fire Hazards in Epoxy Composites.” J. Mater. Chem., 22 22037–22043 (2012)

    Article  Google Scholar 

  38. Ramanathan, T, Abdala, AA, Stankovich, S, Dikin, DA, Herrera-Alonso, M, Piner, RD, Adamson, DH, Schniepp, HC, Chen, X, Ruoff, RS, Nguyen, ST, Aksay, IA, Prud’Homme, RK, Brinson, LC, “Functionalized Graphene Sheets for Polymer Nanocomposites.” Nat. Nanotechnol., 3 327–331 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the Open Project Program of State Key Laboratory of Molecular Engineering of Polymers, Fundan University (K2016-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, D., Li, Z. et al. Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites. J Coat Technol Res 15, 1333–1341 (2018). https://doi.org/10.1007/s11998-018-0082-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0082-3

Keywords

Navigation