Skip to main content

Advertisement

Log in

Mathematical and empirical evaluation of accuracy of the Kubelka–Munk model for color match prediction of opaque and translucent surface coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Attempts were made to evaluate mathematically and empirically the accuracy of the Kubelka–Munk model for color match prediction of opaque and translucent surface coatings in the color using industries. To this end, an innovative inversed mathematical evaluation procedure was concocted which comprised of plotting the absorption and scattering constants of the Kubelka–Munk model or any of its various modified form or replacements theories against the intrinsic optical coefficients of the respective exact radiation transfer theories, namely Chandrasekhar for opaque and van de Hulst for translucent media. The results prove mathematically that the Kubelka–Munk model for opaque media is a sound theory and its various suggested modifications or replacements do not improve the color match prediction of opaque surface coating media. This mathematical conclusion was further confirmed by color match prediction of actual opaque paint samples. On the other hand, the mathematical prediction for translucent media illustrated a completely different picture, depicting nonlinearity between the optical constants and the respective concentrations of colorants. This implies that much further work has to be carried out to derive invertible new equations to enforce linearity to such situations or make use of alternative artificial intelligent procedures which are designed especially for nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Schuster, A, “Radiation Through a Foggy Atmosphere.” Astrophys. J., 21 1 (1905)

    Article  Google Scholar 

  2. Kubelka, P, Munk, F, “An Article on Optics of Paint Layers.” Z. Tech. Phys., 12 (1930) 593–601 (1931)

    Google Scholar 

  3. Berns, RS, Mohammadi, M, “Single-Constant Simplification of Kubelka–Munk Turbid-Media Theory for Paint Systems: A Review.” Color Res. Appl., 32 (3) 201–207 (2007)

    Article  Google Scholar 

  4. Zhao, Y, Berns, RS, “Predicting the Spectral Reflectance Factor of Translucent Paints Using Kubelka–Munk Turbid Media Theory: Review and Evaluation.” Color Res. Appl., 34 (6) 417–431 (2009)

    Article  Google Scholar 

  5. Berns, RS, Mohammadi, M, “Evaluating Single- and Two-Constant Kubelka–Munk Turbid Media Theory for Instrumental-Based Inpainting.” Stud. Conserv., 52 (4) 299–314 (2007)

    Article  Google Scholar 

  6. Mahnaz, M and Berns, RS, “Verification of the Kubelka–Munk Turbid Media Theory for Artist Acrylic Paint.” Art-Si.Org, pp. 1–15 (2004)

  7. Takagi, A, Sato, S, Baba, G, “Prediction of Spectral Reflectance Factor Distribution of Color-Shift Paint Finishes.” Color Res. Appl., 32 (5) 378–387 (2007)

    Article  Google Scholar 

  8. Takagi, A, Watanabe, A, Baba, G, “Prediction of Spectral Reflectance Factor Distribution of Automotive Paint Finishes.” Color Res. Appl., 30 (4) 275–282 (2005)

    Article  Google Scholar 

  9. Gunde, MKE, Logar, JKA, Orel, ZC, Orel, B, “Application of the Kubelka–Munk Model to Thickness-Dependent Diffuse Reflectance of Black Paints in the Mid-IR.” Appl. Spectrosc., 49 (5) 623–629 (1995)

    Article  Google Scholar 

  10. Zhao, Y, Berns, RS, “Further investigations of colorant database development for two-constant Kubelka–Munk model for artist acrylic and oil paints’.” MCSL Technical Report, (2006)

  11. Mohammadi, M and Berns, RS, “Testing instrumental-based color matching for artist acrylic paints.” Tech. rep., Rochester Institute of Technology, College of Science, Munsell Color Science Laboratory, (2006)

  12. Hongying, Y, Sukang, Z, Ning, P, “On the Kubelka–Munk Single-Constant/Two-Constant Theories.” Text. Res. J., 80 (3) 263–270 (2010)

    Article  Google Scholar 

  13. De Lucia, M and Buonopane, M, “Color Prediction in Textile Application.” Proceedings of SPIE—the International Society for Optical Engineering, 5457 678–688 (2004)

  14. Zhang, B, Li, H, “Research on Application for Color Matching in Textile Dyeing Based on Numerical Analysis.” International Conference on Computer Science and Software Engineering, pp. 357–360 (2008)

  15. Džimbeg-malčić, V, Barbarić-mikočević, Ž, Itrić, K, “Kubelka–Munk Model in Describing Optical Properties of Paper (I).” Tech. Gaz., 18 (1) 191–196 (2011)

    Google Scholar 

  16. Džimbeg-malčić, V, Barbarić-mikočević, Ž, Itrić, K, “Kubelka–Munk Model in Describing Optical Properties of Paper (II).” Tech. Gaz., 19 (1) 191–196 (2012)

    Google Scholar 

  17. Ma, T, Johnston, WM, Korn, A, “The Color Accuracy of the Kubelka–Munk Model for Various Colorants in Maxillofacial Prosthetic Material.” J. Dent. Res., 66 (9) 1438–1444 (1987)

    Article  Google Scholar 

  18. Mikhail, SS, Azer, SS, Johnston, WM, “Accuracy of Kubelka–Munk Reflectance Theory for Dental Resin Composite Material.” Dent. Mater., 28 (7) 729–735 (2012)

    Article  Google Scholar 

  19. Ragain, JC, Johnston, WM, “Accuracy of Kubelka–Munk Reflectance Theory Applied to Human Dentin and Enamel.” J. Dent. Res., 80 (2) 449–452 (2001)

    Article  Google Scholar 

  20. Nobbs, JH, “Kubelka–Munk Model and the Prediction of Reflectance.” Rev. Prog. Color. Relat. Top., 15 (1) 66–75 (1985)

    Article  Google Scholar 

  21. Vargas, WE, Niklasson, GA, “Applicability Conditions of the Kubelka–Munk Model.” Appl. Opt., 36 (22) 5580–5586 (1997)

    Article  Google Scholar 

  22. Roy, A, Ramasubramaniam, R, Gaonkar, HA, “Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes.” J. Biomed. Opt., 17 (11) 115006 (2012)

    Article  Google Scholar 

  23. Yang, L, Miklavcic, SJ, “Revised Kubelka–Munk Model. III: A General Theory of Light Propagation in Scattering and Absorptive Media.” J. Opt. Soc. Am. A, 22 (9) 1866–1873 (2005)

    Article  Google Scholar 

  24. Kokhanovsky, AA, “Physical Interpretation and Accuracy of the Kubelka–Munk Theory.” J. Phys. D: Appl. Phys, 40 2210–2216 (2007)

    Article  Google Scholar 

  25. Duncan, DR, “The Colour of Pigment Mixtures.” Proc. Phys. Soc., 52 (3) 390–401 (1940)

    Article  Google Scholar 

  26. Nickols, DG, Orchard, SE, “Precision of Determination of Kubelka and Munk Coefficients from Opaque Colorant Mixtures.” J. Opt. Soc. Am. A, 55 (2) 162–164 (1965)

    Article  Google Scholar 

  27. Shah, HS, Billmeyer, FW, “Kubelka–Munk Analysis of Absorptance in the Presence of Scattering, Including Surface-Reflection Correction to Transmittance.” Color Res. Appl., 10 (1) 26–31 (1985)

    Article  Google Scholar 

  28. Davidson, HR, Hemmendinger, H, Landry, JLR, “A System of Instrumental Colour Control for the Textile Industry.” J. Soc. Dye. Colour., 79 (12) 577–590 (2008)

    Article  Google Scholar 

  29. Blevin, WR, Brown, WJ, “Light-Scattering Properties of Pigment Suspensions.” J. Opt. Soc. Am. A, 51 (9) 975–982 (1961)

    Article  Google Scholar 

  30. Allen, E, Calculations for Colorant Formulations. ACS Publications, New York (1971)

    Book  Google Scholar 

  31. Cheong, WFWF, Prahl, SAS, Welch, AJA, “A Review of the Optical Properties of Biological Tissues.” IEEE J. Quantum Electron., 26 (12) 2166–2185 (1990)

    Article  Google Scholar 

  32. Valz, H, Industrial Color Testing: Fundamentals and Techniques. Wiley-VCH, New York (2001)

    Book  Google Scholar 

  33. Yang, L, Kruse, B, “Revised Kubelka Munk Theory. I. Theory and Application.” J. Opt. Soc. Am. A, 21 (10) 1933–1941 (2004)

    Article  Google Scholar 

  34. Pierce, PE, Marcus, RT, “Radiative Transfer Theory Solid Color-Matching Calculations.” Color Res. Appl., 22 (2) 72–87 (1997)

    Article  Google Scholar 

  35. Kubelka, P, “New Contributions to the Optics of Intensely Light-Scattering Materials Part II: Nonhomogeneous Layers.” J. Opt. Soc. Am. A, 44 (4) 330–335 (1954)

    Article  Google Scholar 

  36. Mudgett, PS, Richards, LW, “Multiple Scattering Calculations for Technology.” Appl. Opt., 10 (7) 1485–1502 (1971)

    Article  Google Scholar 

  37. Kubelka, P, “New Contributions to the Optics of Intensely Light-Scattering Materials. Part I.” J. Opt. Soc. Am. A, 38 (5) 448–457 (1948)

    Article  Google Scholar 

  38. Graaff, R, Aarnoudse, JG, de Mul, FF, Jentink, HW, “Light Propagation Parameters for Anisotropically Scattering Media Based on a Rigorous Solution of the Transport Equation.” Appl. Opt., 28 (12) 2273–2279 (1989)

    Article  Google Scholar 

  39. De La Osa, RA, Alonso, AG, Ortiz, D, González, F, Moreno, F, Saiz, JM, “Extension of the Kubelka–Munk Theory to an Arbitrary Substrate: A Monte Carlo Approach.” J. Opt. Soc. Am. A, 33 (10) 2053–2060 (2016)

    Article  Google Scholar 

  40. Reynolds, L, Johnson, C, Ishimaru, A, “Diffuse Reflectance from a Finite Blood Medium: Applications to the Modeling of Fiber Optic Catheters.” Appl. Opt., 15 (9) 2059–2067 (1976)

    Article  Google Scholar 

  41. Giovanelli, R, “Reflection by Semi-Infinite Diffusers.” J. Modern. Opt., 2 (4) 153–162 (1955)

    Google Scholar 

  42. Case, KM, Zweifel, PF, Linear Transport Theory. Addison-Wesley, Reading (1967)

    Google Scholar 

  43. Chandrasekhar, S, Radiative Transfer. Dover Publications, New York (1960)

    Google Scholar 

  44. de Hulst, V, Christoffel, H, Multiple Light Scattering: Tables, Formulas and Applications, Vol. 1. Academic Press, New York (1980)

    Google Scholar 

  45. Blevin, WR, Brown, WJ, “Total Reflectances of Opaque Diffusers.” J. Opt. Soc. Am. A, 52 (11) 1250–1255 (1962)

    Article  Google Scholar 

  46. Klier, K, “Absorption and Scattering in Plane Parallel Turbid Media.” J. Opt. Soc. Am. A, 62 (7) 882–885 (1972)

    Article  Google Scholar 

  47. Mudgett, PS, Richards, LW, “Multiple Scattering Calculations for Technology II.” J. Colloid Interface Sci., 39 (3) 551–567 (1972)

    Article  Google Scholar 

  48. Rogers, WF, “New Concept in Hydrograph Analysis.” Water Resour. Res., 8 (4) 973–981 (1972)

    Article  Google Scholar 

  49. Brinkworth, BJ, “Calculation of Attenuation and Back-Scattering in Cloud and Fog.” Atmos. Environ. (1967), 5 (8) 605–611 (1971)

    Article  Google Scholar 

  50. Brinkworth, BJ, “Interpretation of the Kubelka–Munk Coefficients in Reflection Theory.” Appl. Opt., 11 (6) 1434–1435 (1972)

    Article  Google Scholar 

  51. Thennadil, SN, “Relationship between the Kubelka–Munk Scattering and Radiative Transfer Coefficients.” J. Opt. Soc. Am. A, 25 (7) 1480–1485 (2008)

    Article  Google Scholar 

  52. Gaonkar, HA, Kumar, D, Ramasubramaniam, R, Roy, A, “Decoupling Scattering and Absorption of Turbid Samples Using a Simple Empirical Relation Between Coefficients of the Kubelka–Munk and Radiative Transfer Theories.” Appl. Opt., 53 (13) 2892–2898 (2014)

    Article  Google Scholar 

  53. Sandoval, C, Kim, AD, “Deriving Kubelka–Munk Model From Radiative Transport.” J. Opt. Soc. Am. A, 31 (3) 628–636 (2014)

    Article  Google Scholar 

  54. Neuman, M, Coppel, LG, Edström, P, “Point Spreading in Turbid Media with Anisotropic Single Scattering.” Opt. Express., 19 (3) 1915–1920 (2011)

    Article  Google Scholar 

  55. Joseph, RI, Thomas, ME, “How Accurate is the Kubelka–Munk Theory of Diffuse Reflection? A Quantitative Answer.” In Proc. of SPIE, 2012

  56. Yust, BG, Sardar, DK, Tsin, A, “A Comparison of Methods for Determining Pptical Properties of Thin Samples.” Opt. Interact. with Tissues Cells XXI, 7562 75620C-75620C-9 (2010)

  57. Walowit, E, McCarthy, CJ, Berns, RS, “An Algorithm for the Optimization of Kubelka–Munk Absorption and Scattering Coefficients.” Color Res. Appl., 12 (6) 340–343 (1987)

    Article  Google Scholar 

  58. McDonald, R, Colour Physics for Industry. Society of Dyers and Colourists, West Yorkshire (1997)

    Google Scholar 

  59. Marcus, RT, “Determining Dimensioned Values of Kubelka–Munk Scattering and Absorption Coefficients.” Color Res. Appl., 3 (4) 183–187 (1978)

    Article  Google Scholar 

  60. Allen, E, “Basic Equations Used in Computer Color Matching.” J. Opt. Soc. Am. A, 56 (9) 1256–1259 (1966)

    Article  Google Scholar 

  61. Allen, E, “Basic Equations Used in Computer Color Matching, II Tristimulus Match, Two-Constant Theory.” J. Opt. Soc. Am. A, 64 (7) 991–993 (1974)

    Article  Google Scholar 

  62. Peyvandi, S, Amirshahi, SH, Sluban, B, “The Total Colorant Sensitivity of a Color Matching Recipe: An Approach to Colorant Weighting and Tinctorial Strength Errors.” Color Res. Appl., 33 (4) 300–306 (2008)

    Article  Google Scholar 

  63. Sluban, B, “Different Measures of Sensitivity of the Recipe Colour to Random and Proportional Dye Concentration Error. Part 1: Definitions, Mutual Relations and Estimates of Maximal Colour Errors.” Color. Technol., 121 (3) 169–177 (2005)

    Article  Google Scholar 

  64. Sluban, B, “Comparison of Colorimetric and Spectrophotometric Algorithms for Computer Match Prediction.” Color Res. Appl., 18 (2) 74–79 (1993)

    Article  Google Scholar 

  65. Sluban, B, Nobbs, JH, “The Colour Sensitivity of a Colour Matching Recipe.” Color Res. Appl., 20 (4) 226–234 (1995)

    Article  Google Scholar 

  66. Sluban, B, Sauperl, O, “Different Measures of Sensitivity of Recipe Colour to Random and Proportional Dye Concentration Error. Part 2: An Example of Target-Position Dependence and Span.” Color. Technol., 121 (5) 281–286 (2005)

    Article  Google Scholar 

  67. Sluban, B, Auperl, O, Pozderec, M, “Different Measures of Sensitivity of Recipe Colour to Random and Proportional Dye Concentration Error. Part 3: Observed Repeatability in Regard to Predicted Sensitivity.” Color. Technol., 123 (1) 24–28 (2007)

    Article  Google Scholar 

  68. Ramakrishna, M, Hultin, HO, Atallah, MT, “A Comparison of Dogfish and Bovine Chymotrypsins in Relation to Protein Hydrolysis.” J. Food. Sci., 52 (5) 1198–1202 (1987)

    Article  Google Scholar 

  69. Gate, LF, “Comparison of the Photon Diffusion Model and Kubelka–Munk Equation with the Exact Solution of the Radiative Transport Equation.” Appl. Opt., 13 (2) 236–238 (1974)

    Article  Google Scholar 

  70. Love, RB, Oglesby, S, Gailey, I, “The Relation Between Dye Concentration and Reflectance-Amendments to the Kubelka–Munk Equation.” J. Soc. Dye. Colour., 81 (12) 609–614 (1965)

    Article  Google Scholar 

  71. Rundlöf, M, Bristow, JA, “A Note Concerning the Interaction Between Light Scattering and Light Absorption in the Application of the Kubelka–Munk Equations.” J. Pulp Pap. Sci., 23 (5) 220–223 (1997)

    Google Scholar 

  72. Walowit, E, McCarthy, C, Berns, RS, “Spectrophotometric Color Matching Based on Two-Constant Kulbelka–Munk Theory.” COLOR Research and Application, 13 (6) 358–362 (1988)

    Article  Google Scholar 

  73. Saunderson, JL, “Calculation of the Color of Pigmented Plastics.” J. Opt. Soc. Am. A, 32 (12) 727–736 (1942)

    Article  Google Scholar 

  74. Maheu, B, Gouesbet, G, “Four-Flux Models to Solve the Scattering Transfer Equation: Special Cases.” Appl. Opt., 25 (7) 1122–1128 (1986)

    Article  Google Scholar 

  75. Gershun, A, “Fresnel Reflection of Diffusely Incident Light.” J. Opt. Soc. Am. A, 35 (2) 162–163 (1945)

    Article  Google Scholar 

  76. Chadwick, RS, Chang, ID, “A Laser Study of the Motion of Particles Suspended in a Slow Viscous Shear Flow.” J. Colloid Interface Sci., 42 (3) 516–534 (1973)

    Article  Google Scholar 

  77. Star, WM, Marijnissen, JPA, van Gemert, MJC, “New Trends in Photobiology Light Dosimetry: Status and Prospects.” J. Photochem. Photobiol. B Biol., 1 (2) 149–167 (1987)

    Article  Google Scholar 

  78. Auger, JC, Martinez, VA, Stout, B, “Theoretical Study of the Scattering Efficiency of Rutile Titanium Dioxide Pigments as a Function of Their Spatial Dispersion.” J. Coat. Technol. Res., 6 (1) 89–97 (2009)

    Article  Google Scholar 

  79. Auger, JC, Stout, B, “Dependent Light Scattering in White Paint Films: Clarification and Application of the Theoretical Concepts.” J. Coat. Technol. Res., 9 (3) 287–295 (2012)

    Article  Google Scholar 

  80. Gush, RJ, King, TA, Jayson, MIV, “Aspects of Laser Light Scattering from Skin Tissue with Application to Laser Doppler Blood Flow Measurement.” Phys. Med. Biol., 29 1463–1476 (1984)

    Article  Google Scholar 

  81. Twersky, V, “Multiple Scattering of Waves and Optical Phenomena.” J. Opt. Soc. Am., 52 145–171 (1962)

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to express their appreciation for the support of the center of excellence for color science and technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ameri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandpay, M.G., Ameri, F., Ansari, K. et al. Mathematical and empirical evaluation of accuracy of the Kubelka–Munk model for color match prediction of opaque and translucent surface coatings. J Coat Technol Res 15, 1117–1131 (2018). https://doi.org/10.1007/s11998-018-0056-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0056-5

Keywords

Navigation