Skip to main content
Log in

Preparation and evaluation of degradable polyurethane with low surface energy for marine antifouling coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Two polyurethanes were prepared through the reaction of 1,6-diisocyanatohexane (HDI) with two kinds of alcoholates. The first alcoholate was synthesized from alcoholized lactide (PLA) and dodecafluoroheptyl methacrylate (DFHMA) with the solid super acid (SO42−/ZrO) acting as the catalyst, and the other alcoholate was a mixture of PLA and DFHMA. The composition and structure of these two polyurethanes were investigated by infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The mass loss, attachment of bacteria and algae, and the water contact angle were used to evaluate the degradable and antifouling performance of the two polyurethane coatings. The results showed that the maximum contact angle of PLIPFI reached 129°, its mass loss was higher than 10% in 65 days, and after 65 days, the mass loss appeared to be stable, and the antiadhesion performance of the polyurethanes coatings was also enhanced. All of these results indicated that the PU modified with a graft segment may be promising for obtaining antifouling materials that not only can resist the adhesion of microorganisms but also show self-renewal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 244 (2011)

    Article  Google Scholar 

  2. Thomas, KV, Brooks, S, “The Environmental Fate and Effects of Antifouling Paint Biocides.” Biofouling, 26 73 (2010)

    Article  Google Scholar 

  3. Schultz, MP, Bendick, JA, Holm, ER, Hertel, WM, “Economic Impact of Biofouling on a Naval Surface Ship.” Biofouling, 27 87 (2011)

    Article  Google Scholar 

  4. Carteau, David, Vallée-Réhel, Karine, et al., “Development of Environmentally Friendly Antifouling Paints Using Biodegradable Polymer and Lower Toxic Substances.” Prog. Org. Coat., 77 (2) 485–493 (2014)

    Article  Google Scholar 

  5. Briassoulis, D, “An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films.” J. Polym. Environ., 12 (2) 65–81 (2004)

    Article  Google Scholar 

  6. Cohn, D, Salomon, AH, “Designing Biodegradable Multiblock PCL/PLA Thermoplastic Elastomers.” Biomaterials, 26 (15) 2297–2305 (2005)

    Article  Google Scholar 

  7. Ma, C, Xu, L, Xu, W, et al., “Degradable Polyurethane for Marine Anti-biofouling.” J. Mater. Chem. B, 1 (24) 3099–3106 (2013)

    Article  Google Scholar 

  8. Beigbeder, A, Degee, P, Conlan, SL, Mutton, RJ, Clare, AS, Pettitt, ME, Callow, ME, Callow, JA, Dubois, P, “Preparation and Characterisation of Silicone-Based Coatings Filled with Carbon Nanotubes and Natural Sepiolite and Their Application as Marine Fouling-Release Coatings.” Biofouling, 24 291 (2008)

    Article  Google Scholar 

  9. Magin, CM, Long, CJ, Cooper, SP, Ista, LK, Lopez, GP, Brennan, AB, “Engineered Antifouling Microtopographies: The Role of Reynolds Number in a Model that Predicts Attachment of Zoospores of Ulva and Cells of Cobetia Marina.” Biofouling, 26 719 (2010)

    Article  Google Scholar 

  10. Li, Jiang, Wang, Guoqing, Ding, Chunhua, Jiang, Hong, Wang, Peiqing, “Synthesis and Evaluation of Polystyrene–Polybutadiene–Polystyrene–Dodecafluoroheptyl Methacrylate/Polystyrene–Polybutadiene–Polystyrene Hybrid Antifouling Coating.” J. Colloid Interface Sci., 434 (10) 71–76 (2014)

    Article  Google Scholar 

  11. Youngblood, JP, Andruzzi, L, Ober, CK, et al., “Coatings Based on Side-Chain Ether-Linked Poly(Ethylene Glycol) and Fluorocarbon Polymers for the Control of Marine Biofouling.” Biofouling, 19 91–98 (2003)

    Article  Google Scholar 

  12. Li, Jiang, Xie, Zhuolin, Wang, Guoqing, Ding, Chunhua, Jiang, Hong, Wang, Peiqing, “Preparation and Evaluation of Amphiphilic Polymer as Fouling-Release Coating in Marine Environment.” J. Coat. Technol. Res., 10 1–9 (2017)

    Google Scholar 

  13. Weinman, Craig J, Finlay, John A, Park, Daewon, et al., “ABC Triblock Surface Active Block Copolymer with Grafted Ethoxylated Fluoroalkyl Amphiphilic Side Chains for Marine Antifouling/Fouling-Release Applications.” Langmuir, 25 (20) 12266–12274 (2009)

    Article  Google Scholar 

  14. Schumacher, JF, Carman, ML, Estes, TG, et al., “Engineered Antifouling Microtopographies—Effect of Feature Size, Geometry, and Roughness on Settlement of Zoospores of the Green Alga Ulva.” Biofouling, 23 (1) 55–62 (2007)

    Article  Google Scholar 

  15. Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50 75–104 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports of the horizontal projects (zzzz002023317 and zzzz002023301). This study was also supported by the Analysis and Testing Center of Hainan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, G., Xie, Z. et al. Preparation and evaluation of degradable polyurethane with low surface energy for marine antifouling coating. J Coat Technol Res 16, 1055–1064 (2019). https://doi.org/10.1007/s11998-018-00180-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-00180-4

Keywords

Navigation