Advertisement

Journal of Coatings Technology and Research

, Volume 15, Issue 1, pp 13–40 | Cite as

Protective coatings for offshore wind energy devices (OWEAs): a review

  • A. W. MomberEmail author
  • T. Marquardt
Review Paper

Abstract

Coating specifications for offshore wind energy devices (OWEAs) are still based on specifications for the offshore oil and gas industry. Recently, two standards, developed for OWEA in the German offshore section (North Sea and Baltic Sea), were issued. This article reviews current offshore standards and commercial specifications used in the German OWEA industry. Stresses are defined for different zones of the structures. Specified coating systems for different stresses, including testing methods, are discussed. A review of 34 commercial coating specifications for OWEA in the North Sea and the Baltic Sea is provided. Evaluation parameters include number of layers, dry film thickness, and binder types for different coats. Special coating requirements are discussed, namely impact resistance, abrasion resistance, icing/deicing performance, low friction, color and gloss stability, and low-temperature performance. Finally, trends for the utilization of thermal spray metals are reviewed.

Keywords

Abrasion Corrosion protection Impact Offshore 

Notes

Acknowledgments

This investigation was funded through the German Federal Ministry of Education and Research (BMBF) under OWS-MV 03WKCR3E.

References

  1. 1.
    Momber, AW, “Corrosion and Corrosion Protection of Support Structures for Offshore Wind Energy Devices (OWEA).” Mater. Corr., 62 391–404 (2011)CrossRefGoogle Scholar
  2. 2.
    Momber, AW, “Quantitative Performance Assessment of Corrosion Protection Systems for Offshore Wind Power Transmission Platforms.” Renew. Energy, 94 314–327 (2016)CrossRefGoogle Scholar
  3. 3.
    Mühlberg, K, “Corrosion Protection for Windmills Onshore and Offshore.” J. Prot. Coat. Lin., 21 (4) 30–35 (2004)Google Scholar
  4. 4.
    ISO 12944-5, “Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 5: Protective Paint Systems.” International Standard Organization, Genf, September 2007Google Scholar
  5. 5.
    NACE SP0108-2008, “Corrosion Control of Offshore Structures by Protective Coatings.” Standard Practice SP0108-2008, NACE, Houston, TX (2008)Google Scholar
  6. 6.
    Norsok M-501, “Surface Preparation and Protective Coating.” Norsok Standard M-501, Rev. 6, Standards Norway, Lysaker, Norway (2012)Google Scholar
  7. 7.
    ISO 20340, “Paints and Varnishes—Performance Requirements for Protective Paint Systems for Offshore and Related Structures.” International Standard Organization, Genf, April 2009Google Scholar
  8. 8.
    Anderson, TL, Frigaard, P, Rasmussen, MR, Martinelli, L, “Loads on Wind Turbine Access Platforms with Gratings.” In: Smith, JM, Lynett, P (eds.) Proc. 32nd International Conference on Coastal Engineering. Coastal Engineering Research Council (2011)Google Scholar
  9. 9.
    Schaumann, P, Lochte-Holtgreven, S, Steppler, S, “Special Fatigue Aspects in Support Structures of Offshore Wind Turbines.” Materwiss. Werkstofftechn., 42 1075–1081 (2011)CrossRefGoogle Scholar
  10. 10.
    Hilbert, LR, Black, AR, Andersen, F, Mathiesen, T, “Inspection and Monitoring of Corrosion Inside Monopile Foundations for Offshore Wind Turbines.” Eurocorr 2011: European Corrosion Congress, Paper No. 4730, Stockholm, Sweden, 4–8 September, 2011Google Scholar
  11. 11.
    GfKORR, “Korrosionsschutz von Offshore-Windenergieanlagen.” (“Corrosion Protection of Offshore Wind Power Devices.”) Gesellschaft für Korrosionsschutz e.V., Frankfurt/Main, Germany, 2016Google Scholar
  12. 12.
    BAW/VGB, “Korrosionsschutz von Offshore-Windenergieanlagen und Windpark-komponenten. (“Corrosion Protection of Offshore Wind Power Devices and Wind Park Components.”) VGB-S-021-01-2016-03-DE, VGB PowerTech e.V., Essen, Germany, 2016Google Scholar
  13. 13.
    ISO 8044, “Corrosion of Metals and Alloys—Basic Terms and Definitions.” International Standard Organization, Genf, December, 2015Google Scholar
  14. 14.
    Schmitt, G, von Franque, O, “Der postgraduale Diplomstudiengang “Korrosionsschutztechnik” an der Märkischen Fachhochschule lserlohn.” (“The Post-gradual Diploma Program‚ Corrosion Protection at the Iserlohn University of Applied Sciences.”) Werkst. Korr., 47 317–322 (1996)Google Scholar
  15. 15.
    Davey, KR, Lavigne, O, Shah, P, “Establishing an Atlas of Risk of Pitting of Metals at Sea—Demonstrated for Stainless Steel AISI 316L in the Bass Strait.” Chem. Eng. Sci., 140 71–75 (2016)CrossRefGoogle Scholar
  16. 16.
    ISO 12944-2, “Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 2: Classification of Environments.” International Standard Organization, Genf, July 1998Google Scholar
  17. 17.
    SIZ, “Korrosionsverhalten von feuerverzinktem Stahl.” (“Corrosion Performance of Hot Dip Galvanized Steel.”) Merkblatt 400, Stahl-Informations-Zentrum, Düsseldorf, 6. Auflage, 2001Google Scholar
  18. 18.
    Ault, P, “The Use of Coatings for Corrosion Control on Offshore Oil Structures.” Protect. Coat. Eur., 11 (4) 42–46 (2006)Google Scholar
  19. 19.
    Li, YT, Hou, BR, “Study on Rust Layers on Steel in Different Marine Corrosion Zone.” Chin. J. Oceanol. Limnol., 16 (3) 231–236 (1998)CrossRefGoogle Scholar
  20. 20.
    Chandler, KA, Marine and Offshore Corrosion. Butterworths, London (1985)Google Scholar
  21. 21.
    Huang, Y, Yu, X, Zhang, Q, DeMarco, R, “Corrosion Performance of High Strength Low Alloy Steel AISI 4135 in the Marine Splash Zone.” Electrochemistry, 85 (1) 7–12 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhang, X, Yang, S, Zhang, W, Guo, H, He, X, “Influence of Outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet-Dry Cycles.” Corr. Sci., 82 165–172 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, HH, Du, M, “Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone.” Acta Metall. Sin., (2017).  https://doi.org/10.1007/s40195-017-0535-1 Google Scholar
  24. 24.
    DNVGL, “Corrosion Protection for Wind Turbines.” DNVGL-RP-0416, DNV GL AS, March 2016Google Scholar
  25. 25.
    Soerensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 135–176 (2009)CrossRefGoogle Scholar
  26. 26.
    Schröder, HT, “Abriebfestigkeiten der Korrosionsschutzbeschichtungen im Stahlwasserbau.” (“Abrasion Strengths of Corrosion Protection Coatings in Steel Hydraulics Constructions.”) Werkstoffe Korros., 31 866–869 (1980)Google Scholar
  27. 27.
    Bjoergum, A, Knudsen, OO, Kvernbraten, AK, Nilsen, N, “Corrosion Protecting Coating Systems in Arctic Areas.” Proc. Eurocorr 2011: European Corrosion Congr., Stockholm, Sweden, 4–8 September 2011Google Scholar
  28. 28.
    Momber, AW, Irmer, M, Glück, N, “Performance Characteristics of Protective Coatings Under Low-Temperature Offshore Conditions. Part 1: Experimental Set-Up and Corrosion Protection Performance.” Cold Regions Sci. Technol., 127 76–82 (2016)CrossRefGoogle Scholar
  29. 29.
    Momber, AW, Irmer, M, Glück, N, “Performance Characteristics of Protective Coatings Under Low-Temperature Offshore Conditions. Part 2: Surface Status, Hoarfrost Accretion, and Mechanical Properties.” Cold Regions Sci. Technol., 127 109–114 (2016)CrossRefGoogle Scholar
  30. 30.
    Momber, AW, “A Comment on the Impact Resistance of Organic Offshore Coatings at Low Temperatures.” Cold Regions Sci. Technol., 140 1–4 (2017)CrossRefGoogle Scholar
  31. 31.
    Müller, SM, “Beschichtungen im Stahlwasserbau—Auswahl und Applikation.” (“Coatings for Steel Hydraulics Constructions—Selection and Application”.) Korrosionsschutz für Meerwasserbauwerke, HTG, Hamburg, Germany, 10 November, 2016Google Scholar
  32. 32.
    Rhee, YM, Kim, HW, Deng, Y, Lawn, RB, “Contact-Induced Damage in Ceramic Coatings on Compliant Substrates: Fracture Mechanics and Design.” J. Am. Ceram. Soc., 84 1066–1072 (2001)CrossRefGoogle Scholar
  33. 33.
    Qasim, T, Bush, MB, Hu, X, Lawn, RB, “Contact Damage in Brittle Coating Layers: Influence of Surface Curvature.” J. Biomed. Mater. Res. Part B, 73 179–185 (2005)CrossRefGoogle Scholar
  34. 34.
    Miranda, P, Pajares, A, Guiberteau, F, Deng, Y, Lawn, RB, “Designing Damage-Resistant Brittle-Coating Structures: I. Bilayers.” Acta Mater., 51 4347–4356 (2003)CrossRefGoogle Scholar
  35. 35.
    Momber, AW, Blast Cleaning Technology. Springer, London (2008)CrossRefGoogle Scholar
  36. 36.
    Bjoergum, A, Knudsen, OO, Kvernbraten, AK, Nilsen, NI, “Protective Coatings in Arctic Environments.” Proc. Eurocorr 2012: European Coating Congr., Istanbul, Turkey, 9–13 September 2012Google Scholar
  37. 37.
    Kotnarowska, D, Wojtyniak, M, “Influence of Ageing on Mechanical Properties of Epoxy Coatings.” Solid State Phen., 147–149 825–830 (2009)CrossRefGoogle Scholar
  38. 38.
    Momber, AW, Irmer, M, Glück, N, “Effects of Accelerated Low-temperature Ageing on the Performance of Polymeric Coating Systems on Offshore Steel Structures.” Cold Regions Sci. Technol., 140 39–53 (2017)CrossRefGoogle Scholar
  39. 39.
    Jin, X, Su, Y, Ye, M, Su, S, Jin, Z, “The Evaluation of Protective Performance of Coating Systems for Heavy Corrosion Zone of Offshore Platforms.” In: Xiao, J, et al. (eds.) Corrosion and Corrosion Control for Offshore and Marine Construction, pp. 268–274. Pergamon Press, Oxford (1989)Google Scholar
  40. 40.
    Momber, AW, Irmer, M, Glück, N, Plagemann, P, “Abrasion Testing of Organic Corrosion Protection Coating Systems with a Rotating Abrasive Rubber Wheel.” Wear, 348–349 166–180 (2016)CrossRefGoogle Scholar
  41. 41.
    Momber, AW, Irmer, M, Glück, N, “Investigation into the Performance of a Dual-Layer Thin Film Organic Coating During Accelerated Low-Temperature Offshore Testing.” ASME J. Offshore Mech. Arctic Eng., 139 (4) 041402-1–041402-9 (2017)CrossRefGoogle Scholar
  42. 42.
    Binder, G, “Wie (un-)berechenbar ist Korrosionsschutz?“(“How (un-)predictable is Corrosion Protection?”) Korrosionsschutz für Meerwasserbauwerke, HTG, Hamburg, Germany, 10 November, 2016Google Scholar
  43. 43.
    Bjoergum, A, Knudsen, OO, Equey, S, Bastiko, AP, “Coatings for Protection of Boat Landings Against Corrosion and Wear.” 10th Deep Sea Offshore Wind R&D Conf., Trondheim, Norway, 24–25 January 2013Google Scholar
  44. 44.
    Momber, AW, Irmer, M, Glück, N, “Hoar Frost Accretion on Organic Coatings Under Offshore Conditions.” ASME J. Offshore Mechan. Arctic Engng., 138 064502-1–064502-9 (2016)Google Scholar
  45. 45.
    Momber, AW, Irmer, M, Glück, N, “A Note on the Distribution of Stationary Contact Angles on Organic Coatings.” Int. J. Adhes. Adhes., 72 1–5 (2017)CrossRefGoogle Scholar
  46. 46.
    DGUV, “Fußböden in Arbeitsräumen und Arbeitsbereichen mit Rutschgefahr.” (“Floors in Workrooms and Workspaces with Slip Hazard.”) Regel 108-003, Berufsgenossenschaft der Bauwirtschaft, Berlin, Germany, October 2003Google Scholar
  47. 47.
    WSV, “Rahmenvorgaben zur Gewährleistung der fachgerechten Umsetzung verkehrstechnischer Auflagen im Umfeld von Offshore-Anlagen: Kennzeichnung.” (“Standards for the Profesional Execution of Traffic-related Requirements in the Vicinity of Offshore Constructions: Marking.”) Wasser- und Schifffahrtsverwaltung des Bundes (WSV), Kiel, Germany, July 2014Google Scholar
  48. 48.
    ISO 2813, “Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°.” International Standard Organization, Genf, February 2014Google Scholar
  49. 49.
    ISO 11664-4, “Colorimetry—Part 4: CIE 1976 L*a*b Colour Space.” International Standard Organization, Genf, June 2012Google Scholar
  50. 50.
    Iezzi, E, Tagert, J, “Single-component Polysiloxane Topcoats for NAVY Surface Ships.” J. Prot. Coat. Lin., 33 (11) 26–31 (2016)Google Scholar
  51. 51.
    Witucki, GL, “Formulating Options for Polysiloxane Coatings.” J. Prot. Coat. Lin., 30 (1) 55–61 (2013)Google Scholar
  52. 52.
    Momber, AW, Irmer, M, Glück, N, Plagemann, P, “Corrosion Protection Performance of Organic Offshore Coating Systems at −60 °C Temperature Shock.” ASME J. Offshore Mech. Arctic Eng., 138 064501-1–064501-7 (2016)Google Scholar
  53. 53.
    Momber, AW, Plagemann, P, Stenzel, V, “Performance and Integrity of Protective Coating Systems for Offshore Wind Power Structures After Three Years Under Offshore Site Conditions.” Renew. Energy, 74 606–617 (2015)CrossRefGoogle Scholar
  54. 54.
    Hiscock, K, Tyler-Walters, M, Jones, H, “High Level Environmental Screening Study for Offshore Wind Farm Developments: Marine Habitat and Species Project.” Report to Environment Contract W/35/00632/00/00, The Laboratory, Plymouth, UK, August 2002Google Scholar
  55. 55.
    Maar, M, Bolding, K, Petersen, JK, Hansen, JL, Timmermann, K, “Local Effects of Blue Mussels Around Turbine Foundations in an Ecosystem Model of Nysted Off-shore Wind Farm, Denmark.” J. Sear. Res., 62 159–175 (2009)CrossRefGoogle Scholar
  56. 56.
    Wilhelmsson, D, Malm, T, “Fouling Assemblages on Offshore Wind Power Plants and Adjacent Substrata.” Estuar. Coast. Shelf Sci., 9 459–466 (2008)CrossRefGoogle Scholar
  57. 57.
    Bouma, S, Lengkeek, W, “Benthic Communities on Hard Substrates of the Offshore Wind Farm Egmond aan Zee (OWEZ).” Final Report, OWEZ-R-266-T1-20120206, Noordzeewind, Jmuiden, Netherlands, 2012Google Scholar
  58. 58.
    Krone, R, Gutowa, L, Joschko, TJ, Schröder, A, “Epifauna Dynamics at an Offshore Foundation—Implications of Future Wind Power Farming in the North Sea.” Mar. Environ. Res., 85 1–12 (2013)CrossRefGoogle Scholar
  59. 59.
    Bessell, A, “Kentish Flats Offshore Wind Farm Turbine Foundation Faunal Colonisation Diving Survey.” Report No. 08/J/1/03/1034/0839, Emu Limited, Southampton, UK, November, 2008Google Scholar
  60. 60.
    Kranz, O, Hörnig, M, Kupferschmidt, C, “Studies of Heavy Corrosion Protection Coatings.” Presentation “Optiwind” Meeting, Bremerhaven, Germany, 23 March, 2015Google Scholar
  61. 61.
    Momber, AW, Plagemann, P, Stenzel, V, Schneider, M, “Investigations Into the Corrosion Protection of Offshore Wind Energy Towers, Part 3: Results of the Laboratory investigations.” J. Prot. Coat. Lin., 26 (11) 38–46 (2009)Google Scholar
  62. 62.
    ISO 15711, “Paints and Varnishes—Determination of Resistance to Cathodic Disbonding of Coatings Exposed to Sea Water.” International Standard Organization, Genf, March, 2003.Google Scholar
  63. 63.
    ASTM G8, “Standard Test Methods for Cathodic Disbonding of Pipeline Coatings.” ASTM Intern., West Conshohocken, PA, USA, 2010Google Scholar
  64. 64.
    Mahdavi, F, Forsyth, M, Tan, M, “Techniques for Testing and Monitoring the Cathodic Disbondment of Organic coatings: An Overview of Major Obstacles and Innovations.” Progr. Organ. Coat., 105 163–175 (2017)CrossRefGoogle Scholar
  65. 65.
    Büteführ, M, Prenger, F, “Ergebnisse des Korrosionsverhaltens von verschiedenen ZnAl-Überzügen anhand von Langzeitauslagerungen im maritimen Bereich.” (“Corrosion Performance of Different ZnAl Coatings Based on Long-term Site Exposure Tests in Maritime Environments.”) In: 13. Tagung Korrosionsschutz in der maritimen Technik, pp. 51–68, DNVGL, Hamburg, 2014Google Scholar
  66. 66.
    Knudsen, OO, Simon, C, Schnars, H, Huhn, H, Buter, S, van der Mijle Meijer, H, “Low Cost Corrosion Protection for Offshore Wind.” Wiki Cleantech, 2015 (http://wiki-cleantech.com/wind-energy/low-cost-corrosion-protection-for-offshore-wind2)
  67. 67.
    Momber, AW, Plagemann, P, Stenzel, V, “The Adhesion of Corrosion Protection Coating Systems for Offshore Wind Power Constructions After Three Years Under Offshore Exposure.” Int. J. Adhes. Adhes., 65 96–101 (2016)CrossRefGoogle Scholar
  68. 68.
    Bjoergum, A, “Corrosion Protection of Offshore Wind Turbines—Long Life Protective Coatings.” Corrosion Protection for Offshore Wind, Bremen, Germany, 28–30 April 2015Google Scholar
  69. 69.
    Bobzin, K, Öte, M, Knoch, M, “Characterization of Thermally Sprayed ZnAl15 Corrosion Protection Coatings for Offshore-Wind-Turbines.” Int. Thermal Spray Conf. 2016, Shanghai, China, 11–12 May, 2016Google Scholar
  70. 70.
    Krömmer, W, Momber, AW, “Verbesserter Korrosionsschutz mit optimierten lichtbogengespritzten Metallisierungen für den Oberflächenschutz an Offshore-Windenergieanlagen.” (“Improved Corrosion Protection With Optimized Arc-sprayed Metals for the Surface Protection of Offshore Wind Power Devices.”) In: Korrosionsschutz in der Maritimen Technik, pp. 41–48, DNV-GL, Hamburg, 2014Google Scholar
  71. 71.
    Black, AR, Nielsen, PK, “Durability of Coating Repair Systems for Offshore Service.” Proc. Eurocorr 2014: European Corrosion Congr., Pisa, Italy, 8–12 September, 2014Google Scholar
  72. 72.
    Momber, AW, Buchbach, S, Plagemann, P, Winkels, I, Marquardt, T, Viertel, J, “Statistical Effects of Surface Preparation and Coating Type on the Corrosion Protection Performance of Repair Coatings for Offshore Wind Power Constructions.” Mater. Corros. (2017).  https://doi.org/10.1002/maco.201709765

Copyright information

© American Coatings Association 2017

Authors and Affiliations

  1. 1.Muehlhan AGHamburgGermany

Personalised recommendations