Skip to main content
Log in

Slot die stripe coating of low viscous fluids

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Slot die coating is applied to deposit thin and homogenous films in roll-to-roll and sheet-to-sheet applications. The critical step in operation is to choose suitable process parameters within the process window. In this work, we investigate an upper limit for stripe coatings. This maximum film thickness is characterized by stripe merging which needs to be avoided in a stable process. It is shown that the upper limit reduces the process window for stripe coatings to a major extent. As a result, stripe coatings at large coating gaps and low viscosities are only possible for relatively thick films. Explaining the upper limit, a theory of balancing the side pressure in the gap region in the cross-web direction has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CF:

Correction factor

ETOH:

Ethanol

h :

Height (z-axis) (µm)

l :

Length (x-axis) (mm)

n :

Power law exponent

p :

Pressure (mbar)

PAA:

Polyacrylamide

q:

Specific volume flow (m2/min)

t :

Time (s)

u :

Speed (m/min)

w :

Width (y-axis) (mm)

x :

x-axis in web direction

y :

y-axis in cross-web direction

\(\dot{\gamma }\) :

Shear rate (1/s)

\(\eta\) :

Newtonian viscosity (Pa s)

\(\theta\) :

Static contact angle (°)

\(\vartheta\) :

Dynamic contact angle (°)

\(\kappa\) :

Consistency factor (Pa sε)

\(\sigma\) :

Surface tension (mN/m)

approx.:

Approximated

Bead:

Bead

Ca:

Capillary number

Cap:

Capillary

crit:

Critical

D:

Downstream

G:

Gap

Fluid:

Fluid

max:

Maximum

min:

Minimum

s:

Slot

Side:

Side

solid:

Solid

spacer:

Spacer

spread:

Spread

U:

Upstream

Vac:

Vacuum

w:

Web

wet:

Wet

1:

Position 1

2:

Position 2

3:

Position 3

References

  1. Kang, H, Park, J, Shin, K, “Statistical Analysis for the Manufacturing of Multi-strip Patterns by Roll-to-Roll Single Slot-Die Systems.” Robot. Comput. Integr. Manuf., 30 (4) 363–368 (2014)

    Article  Google Scholar 

  2. Peters, K, Wengeler, L, Scharfer, P, Schabel, W, “Liquid Film Coating of Small Molecule OLEDs.” J. Coat. Technol. Res., 11 (1) 75–81 (2014)

    Article  Google Scholar 

  3. Krebs, FC, “Fabrication and Processing of Polymer Solar Cells. A Review of Printing and Coating Techniques.” Solar Energy Mater. Solar Cells, 93 (4) 394–412 (2009)

    Article  Google Scholar 

  4. Schmitt, M, Scharfer, P, Schabel, W, “Slot Die Coating of Lithium–Ion Battery Electrodes: Investigations on Edge Effect Issues for Stripe and Pattern Coatings.” J. Coat. Technol. Res., 11 (1) 57–63 (2014)

    Article  Google Scholar 

  5. Schmitt, M, Diehm, R, Scharfer, P, Schabel, W, “An Experimental and Analytical Study on Intermittent Slot Die Coating of Viscoelastic Battery Slurries.” J. Coat. Technol. Res., 12 (5) 927–938 (2015)

    Article  Google Scholar 

  6. Kistler, SF, Schweizer, PM (eds.), Liquid Film Coating. Springer, Dordrecht, 1997

    Google Scholar 

  7. Tsuda, T, “Coating Flows of Power-Law Non-Newtonian Fluids in Slot Coating.” J. Soc. Rheol. Jpn., 38 (4/5) 223–230 (2010)

    Article  Google Scholar 

  8. Gutoff, EB, Cohen, ED, Kheboian, GI, Coating and Drying Defects: Troubleshooting Operating Problems. Wiley-Interscience, Hoboken (2006)

    Book  Google Scholar 

  9. Romero, OJ, Carvalho, MS, “Response of Slot Coating Flows to Periodic Disturbances.” Chem. Eng. Sci., 63 (8) 2161–2173 (2008)

    Article  Google Scholar 

  10. Ruschak, KJ, “Limiting Flow in a Pre-metered Coating Device.” Chem. Eng. Sci., 31 1057–1060 (1976)

    Article  Google Scholar 

  11. Carvalho, MS, Kheshgi, HS, “Low-Flow Limit in Slot Coating: Theory and Experiments.” AIChE J., 46 (10) 1907–1917 (2000)

    Article  Google Scholar 

  12. Schmitt, M, Raupp, S, Wagner, D, Scharfer, P, Schabel, W, “Analytical Determination of Process Windows for Bilayer Slot Die Coating.” J. Coat. Technol. Res., 12 (5) 877–887 (2015)

    Article  Google Scholar 

  13. Dobroth, T, Erwin, L, “Causes of Edge Beads in Cast Films.” Polym. Eng. Sci., 26 (7) 462–467 (1986)

    Article  Google Scholar 

  14. Abbel, R, de Vries, I, Langen, A, Kirchner, G, t‘Mannetje, H, Gorter, H, Wilson, J, Groen, P, “Toward High Volume Solution Based Roll-to-Roll Processing of OLEDs.” J. Mater. Res., 32 (12) 2219–2229 (2017)

    Article  Google Scholar 

  15. Raupp, S, Daume, D, Tekoglu, S, Merklein, L, Lemmer, U, Hernandez-Sosa, G, Sauer, HM, Dörsam, E, Scharfer, P, Schabel, W, “Slot Die Coated and Flexo Printed Highly Efficient SMOLEDs.” Adv. Mater. Technol., 2 1600230 (2017)

    Article  Google Scholar 

  16. Raupp, SM, Merklein, L, Hietzschold, S, Zürn, M, Scharfer, P, Schabel, W, “Slot Die-Coated Blue SMOLED Multilayers.” J. Coat. Technol. Res., 14 (5) 1029–1037 (2017)

    Article  Google Scholar 

  17. Raupp, SM, Merklein, L, Pathak, M, Scharfer, P, Schabel, W, “An Experimental Study on the Reproducibility of Different Multilayer OLED Materials Processed by Slot Die Coating.” Chem. Eng. Sci., 160 113–120 (2017)

    Article  Google Scholar 

  18. Choi, K-J, Lee, J-Y, Shin, D-K, Park, J, “Investigation on Slot-Die Coating of Hybrid Material Structure for OLED Lightings.” J. Phys. Chem. Solids, 95 119–128 (2016)

    Article  Google Scholar 

  19. Choi, K-J, Lee, J-Y, Park, J, Seo, Y-S, “Multilayer Slot-Die Coating of Large-Area Organic Light-Emitting Diodes.” Org. Electron., 26 66–74 (2015)

    Article  Google Scholar 

  20. Schmitt, M, Slot Die Coating Of Lithium–Ion Battery Electrodes. KIT Scientific Publishing, Karlsruhe, 2016

    Google Scholar 

  21. Søndergaard, RR, Hösel, M, Krebs, FC, “Roll-to-Roll Fabrication of Large Area Functional Organic Materials.” J. Polym. Sci. B Polym. Phys., 51 (1) 16–34 (2013)

    Article  Google Scholar 

  22. Hong, S, Lee, J, Kang, H, Lee, K, “Slot-Die Coating Parameters of the Low-Viscosity Bulk-Heterojunction Materials Used for Polymer Solarcells.” Solar Energy Mater. Solar Cells, 112 27–35 (2013)

    Article  Google Scholar 

  23. Cho, AR, Kim, EH, Park, SY, Park, LS, “Flexible OLED Encapsulated with Gas Barrier Film and Adhesive Gasket.” Synth. Met., 193 77–80 (2014)

    Article  Google Scholar 

  24. Park, J-S, Chae, H, Chung, HK, Lee, SI, “Thin Film Encapsulation for Flexible AM-OLED. A Review.” Semicond. Sci. Technol., 26 (3) 34001 (2011)

    Article  Google Scholar 

  25. Hösel, M, Søndergaard, RR, Jørgensen, M, Krebs, FC, “Fast Inline Roll-to-Roll Printing for Indium-Tin-Oxide-Free Polymer Solar Cells Using Automatic Registration.” Energy Technol., 1 (1) 102–107 (2013)

    Article  Google Scholar 

  26. Andersen, TR, Cooling, NA, Almyahi, F, Hart, AS, Nicolaidis, NC, Feron, K, Noori, M, Vaughan, B, Griffith, MJ, Belcher, WJ, Dastoor, PC, “Fully Roll-to-Roll Prepared Organic Solar Cells in Normal Geometry with a Sputter-Coated Aluminium Top-Electrode.” Solar Energy Mater. Solar Cells, 149 103–109 (2016)

    Article  Google Scholar 

  27. Wen, S-H, Liu, T-J, “Extrusion Die Design for Multiple Stripes.” Polym. Eng. Sci., 9 (35) 759–767 (1995)

    Article  Google Scholar 

  28. Han, GH, Lee, SH, Ahn, W-G, Nam, J, Jung, HW, “Effect of Shim Configuration on Flow Dynamics and Operability Windows in Stripe Slot Coating Process.” J. Coat. Technol. Res., 11 (1) 19–29 (2014)

    Article  Google Scholar 

  29. Wengeler, L, Peters, K, Schmitt, M, Wenz, T, Scharfer, P, Schabel, W, “Fluid-Dynamic Properties and Wetting Behavior of Coating Inks for Roll-to-Roll Production of Polymer-Based Solar Cells.” J. Coat. Technol. Res., 11 (1) 65–73 (2014)

    Article  Google Scholar 

  30. Wengeler, L, Schmitt, M, Peters, K, Scharfer, P, Schabel, W, “Comparison of Large Scale Coating Techniques for Organic and Hybrid Films in Polymer Based Solar Cells.” Chem. Eng. Process. Process Intensif., 68 38–44 (2013)

    Article  Google Scholar 

  31. Schmitt, M, Baunach, M, Wengeler, L, Peters, K, Junges, P, Scharfer, P, Schabel, W, “Slot-Die Processing of Lithium–Ion Battery Electrodes—Coating Window Characterization.” Chem. Eng. Process. Process Intensif., 68 32–37 (2013)

    Article  Google Scholar 

  32. Higgins, BG, Scriven, LE, “Capillary Pressure and Viscous Pressure Drop Set Bounds on Coating Bead Operability.” Chem. Eng. Sci., 35 (3) 673–682 (1980)

    Article  Google Scholar 

  33. Lee, SH, Koh, HJ, Ryu, BK, Kim, SJ, Jung, HW, Hyun, JC, “Operability Coating Windows and Frequency Response in Slot Coating Flows from a Viscocapillary Model.” Chem. Eng. Sci., 66 (21) 4953–4959 (2011)

    Article  Google Scholar 

  34. Durst, F, Wagner, H-G, “Slot Coating.” In: Kistler, SF, Schweizer, PM (eds.) Liquid Film Coating, pp. 401–426. Springer, Dordrecht (1997)

    Chapter  Google Scholar 

  35. Cohen, ED, Gutoff, EB (eds.), Modern Coating and Drying Technology. VCH, New York, 1992

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support via the projects KOBALT and POESIE of the German Federal Ministry of Education and Research (Contract Nos. 13N0883 and 13N13692) and Philips Technologie GmbH Innovative Technologies, Aachen. We would like to thank all involved mechanics, assistants, and students for contributing to this work as well as TSE Troller AG, Murgenthal, Switzerland, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian M. Raupp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raupp, S.M., Schmitt, M., Walz, AL. et al. Slot die stripe coating of low viscous fluids. J Coat Technol Res 15, 899–911 (2018). https://doi.org/10.1007/s11998-017-0039-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-0039-y

Keywords

Navigation