Advertisement

Journal of Coatings Technology and Research

, Volume 15, Issue 5, pp 957–966 | Cite as

Color prediction of metallic coatings from measurements at common geometries in portable multiangle spectrophotometers

  • Heng Feng
  • Haisong Xu
  • Fuzheng Zhang
  • Zhehong Wang
Article
  • 160 Downloads

Abstract

Illuminating and viewing geometries may strongly affect the color appearance of metallic coatings, which can be characterized accurately by bidirectional reflectance distribution function (BRDF) measurement devices. However, such devices with hundreds or even thousands of different geometries are usually expensive and complex. Accordingly, two modified models were developed in this study, based on the distribution of aluminum-flake pigments in the coatings, to, respectively, estimate the spectral radiance factors and the CIE tristimulus values of metallic coatings utilizing the measurements at 6 common geometries of portable multiangle spectrophotometers. Their performance was examined with 65 achromatic and 20 chromatic metallic coating samples under D65, A, and F11 illuminants. The average CIEDE2000 color differences over all 19 geometries were found to be less than 1.8 for both models, while the average CAM02-SCD and CIELAB color differences can, respectively, reach 1.7 and 2.0, indicating the effectiveness of our methods.

Keywords

Color appearance Metallic coatings Color prediction Portable multiangle spectrophotometer 

References

  1. 1.
    Ferrero, A, Campos, J, Rabal, AM, Pons, A, “A Single Analytical Model for Sparkle and Graininess Patterns in Texture of Effect Coatings.” Opt. Expr., 21 (22) 26812–26819 (2013)CrossRefGoogle Scholar
  2. 2.
    Klein, GA, Todd, M, Industrial Color Physics. Springer, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Maile, FJ, Pfaff, G, Reynders, P, “Effect Pigments—Past, Present and Future.” Prog. Org. Coat., 54 (3) 150–163 (2005)CrossRefGoogle Scholar
  4. 4.
    Kirchner, E, van den Kieboom, GJ, Njo, L, Supèr, R, Gottenbos, R, “Observation of Visual Texture of Metallic and Pearlescent Materials.” Color Res. Appl., 32 (4) 256–266 (2007)CrossRefGoogle Scholar
  5. 5.
    Gómez, O, Perales, E, Chorro, E, Burgos, FJ, Viqueira, V, Vilaseca, M, Martínez-Verdú, FM, Pujol, J, “Visual and Instrumental Assessments of Color Differences in Automotive Coatings.” Color Res. Appl., 41 (4) 384–391 (2016)CrossRefGoogle Scholar
  6. 6.
    Pointer, M, A Framework for the Measurement of Visual Appearance, pp. 175–2006. CIE Publication, Paris (2006)Google Scholar
  7. 7.
    Nadal, ME, Early, EA, “Color Measurements for Pearlescent Coatings.” Color Res. Appl., 29 (1) 38–42 (2004)CrossRefGoogle Scholar
  8. 8.
    Medina, JM, Diaz, JA, “Classification of Batch Processes in Automotive Metallic Coatings Using Principal Component Analysis Similarity Factors from Reflectance Spectra.” Prog. Org. Coat., 88 75–83 (2015)CrossRefGoogle Scholar
  9. 9.
    Ferrero, A, Rabal, AM, Campos, J, Pons, A, Hernanz, ML, “Variables Separation of the Spectral BRDF for Better Understanding Color Variation in Special Effect Pigment Coatings.” J. Opt. Soc. Am. A, 29 (6) 842–847 (2012)CrossRefGoogle Scholar
  10. 10.
    Ferrero, A, Campos, J, “Challenges in Appearance Characterization of Coatings with Effect Pigments.” In: Laser Science, pp. JTh2A-184. Optical Society of America (2016).  https://doi.org/10.1364/FIO.2016.JTh2A.184
  11. 11.
    Kirchner, E, Ravi, J, “Setting Tolerances on Color and Texture for Automotive Coatings.” Color Res. Appl., 39 (1) 88–98 (2014)CrossRefGoogle Scholar
  12. 12.
    Streitberger, HJ, Dossel, KF, Automotive Paints and Coatings. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  13. 13.
    Rabal, AM, Ferrero, A, Campos, J, Fontecha, JL, Pons, A, Rubiño, AM, Corróns, A, “Automatic Gonio-spectrophotometer for the Absolute Measurement of the Spectral BRDF at In- and Out-of-plane and Retroreflection Geometries.” Metrologia, 49 (3) 213 (2012)CrossRefGoogle Scholar
  14. 14.
    Höpe, A, Atamas, T, Hünerhoff, D, Teichert, S, Hauer, KO, “ARGon 3: 3D Appearance Robot-based Gonioreflectometer at PTB.” Rev. Sci. Instrum., 83 (4) 045102 (2012)CrossRefGoogle Scholar
  15. 15.
    Kirchner, E, Cramer, W, “Making Sense of Measurement Geometries for Multi-angle Spectrophotometers.” Color Res. Appl., 37 (3) 186–198 (2012)CrossRefGoogle Scholar
  16. 16.
    Ferrero, A, Perales, E, Rabal, AM, Campos, J, Martínez-Verdú, FM, Chorro, E, Pons, A, “Color Representation and Interpretation of Special Effect Coatings.” J. Opt. Soc. Am. A, 31 (2) 436–447 (2014)CrossRefGoogle Scholar
  17. 17.
    Steenhoek, LE, “Process for Generating Bidirectional Reflectance Distribution Functions of Gonioapparent Materials with Limited Measurement Data.” US Patent 0,094,601 A1, 2010Google Scholar
  18. 18.
    Ferrero, A, Rabal, A, Campos, J, Martínez-Verdú, F, Chorro, E, Perales, E, Pons, A, Hernanz, ML, “Spectral BRDF-based Determination of Proper Measurement Geometries to Characterize Color Shift of Special Effect Coatings.” J. Opt. Soc. Am. A, 30 (2) 206–214 (2013)CrossRefGoogle Scholar
  19. 19.
    Ferrero, A, Campos, J, Perales, E, Martínez-Verdú, FM, van der Lans, I, Kirchner, EJJ, “Global Color Estimation of Special-effect Coatings from Measurements by Commercially Available Portable Multiangle Spectrophotometers.” J. Opt. Soc. Am. A, 32 (1) 1–11 (2015)CrossRefGoogle Scholar
  20. 20.
    Strothkämper, C, Hauer, KO, Höpe, A, “How to Efficiently Characterize Special Effect Coatings.” J. Opt. Soc. Am. A, 33 (1) 1–8 (2016)CrossRefGoogle Scholar
  21. 21.
    Johnson, GM, Fairchild, MD, “A Top Down Description of S-CIELAB and CIEDE2000.” Color Res. Appl., 28 (6) 425–435 (2003)CrossRefGoogle Scholar
  22. 22.
    CIE, “Colorimetry.” CIE 15: 2004. CIE Central Bureau, Vienna, 2004Google Scholar
  23. 23.
    CIE, A colour appearance model for colour management systems: CIECAM02, p. 159. CIE Publication, Paris (2004)Google Scholar
  24. 24.
    Melgosa, M, Martínez-García, J, Gómez-Robledo, L, Perales, E, Martínez-Verdú, FM, Dauser, T, “Measuring Color Differences in Automotive Samples with lLightness Flop: A Test of the AUDI2000 Color-difference Formula.” Opt. Expr., 22 (3) 3458–3467 (2014)CrossRefGoogle Scholar
  25. 25.
    Kirchner, E, Houweling, J, “Measuring Flake Orientation for Metallic Coatings.” Prog. Org. Coat., 64 (2) 287–293 (2009)CrossRefGoogle Scholar
  26. 26.
    Wißling, P, Metallic Effect Pigments: Fundamentals and Applications. Vincentz Network GmbH & Co. KG, Hannover (2006)Google Scholar
  27. 27.
    Rogelj, N, Goniospectrometric Analysis of Optically Complex Samples: A Study of Diffraction Gratings, Optically Variable Devices, and Coatings with Special Effect Pigments: Academic Dissertation (2015) http://epublications.uef.fi/pub/urn_isbn_978-952-61-1987-8/index_en.html
  28. 28.
    Ferrero, A, Bernad, B, Campos, J, Perales, E, Velázquez, JL, Martínez-Verdú, FM, “Color Characterization of Coatings with Diffraction Pigments.” J. Opt. Soc. Am. A, 33 (10) 1978–1988 (2016)CrossRefGoogle Scholar
  29. 29.
    Perales, E, Chorro, E, Viqueira, V, Martínez-Verdú, FM, “Reproducibility Comparison among Multiangle Spectrophotometers.” Color Res. Appl., 38 (3) 160–167 (2013)CrossRefGoogle Scholar
  30. 30.
    Seubert, CM, Nichols, ME, Frey, J, Shtein, M, Thouless, MD, “The Characterization and Effects of Microstructure on the Appearance of Platelet-polymer Composite Coatings.” J. Mater. Sci., 51 (5) 2259–2273 (2016)CrossRefGoogle Scholar
  31. 31.
    Born, M, Wolf, E, Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  • Heng Feng
    • 1
  • Haisong Xu
    • 1
  • Fuzheng Zhang
    • 1
  • Zhehong Wang
    • 2
  1. 1.State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Hangzhou Institute of Test and Calibration for Quality and Technology SupervisionHangzhouChina

Personalised recommendations