Skip to main content
Log in

Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/phosphonic acids nanocomposites possessing superoleophobic/superhydrophilic and superoleophilic/superhydrophobic characteristics: application of these nanocomposites to the separation of oil and water

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF–(CH2CHSi(OMe)3) n –RF; RF = fluoroalkyl group; n = 2, 3] can undergo the sol–gel reactions in the presence of a variety of phosphonic acid derivatives such as 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotris(methylene phosphonic acid), and 2-phosphonobutane-1,2,4-tricarboxylic acid under alkaline conditions to provide the corresponding fluorinated oligomeric silica/phosphonic acids nanocomposites. Interestingly, it was demonstrated that the modified glasses and filter papers treated with these obtained fluorinated nanocomposites can exhibit the superoleophobic/superhydrophilic and superoleophilic/superhydrophobic characteristics on their surfaces, respectively. More interestingly, the modified filter papers treated with these nanocomposites were applied to the separation of the mixture of oil and water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Queffelec, C, Petit, M, Janvier, P, Knight, DA, Bujoli, B, “Surface Modification Using Phosphonic Acids and Esters.” Chem. Rev., 112 3777–3807 (2012)

    Article  Google Scholar 

  2. Jaehne, E, Oberoi, S, Alder, H-JP, “Ultra Thin Layers as New Concepts for Corrosion Inhibition and Adhesion Promotion.” Prog. Org. Coat., 61 211–223 (2008)

    Article  Google Scholar 

  3. Chauveau, E, Marestin, C, Mercier, R, Brunaux, A, Martin, V, Nogueira, RP, Percheron, A, Roche, V, Waton, H, “Phosphonic Acid-Containing Polysulfones as Anticorrosive Layers.” J. Appl. Polym. Sci., (2015). doi:10.1002/APP.41890

    Google Scholar 

  4. Barthelemy, B, Devillers, S, Minet, I, Delhalle, J, Mekhalif, Z, “Surface-Initiated ATRP of 2-(Methacryloyloxy)Ethyl 2-(Trimethylammonio)Ethyl Phosphate on Phynox.” Appl. Surf. Sci., 258 466–473 (2011)

    Article  Google Scholar 

  5. Sato, H, Fujii, T, Tsuji, E, Aoki, Y, Shimizu, K, Skeldon, P, Thompson, GE, Habazaki, H, “Observation of Self‐Assembled Layers of Alkyl Phosphonic Acid on Aluminum Using Low‐Voltage Scanning Electron Microscopy and AFM.” Surf. Interface Anal., 45 1441–1445 (2013)

    Article  Google Scholar 

  6. Svehla, J, Pabisch, S, Feichtenschlager, B, Holzmann, D, Peterlik, H, Kickelbick, G, “Polyester Preparation in the Presence of Pristine and Phosphonic‐Acid‐Modified Zirconia Nanopowders.” Macromol. Mater. Eng., 297 219–227 (2012)

    Article  Google Scholar 

  7. Gao, W, Dicklinson, L, Grozinger, C, Morin, FG, Reven, L, “Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides.” Langmuir, 12 6429–6435 (1996)

    Article  Google Scholar 

  8. Pawsey, S, Yach, K, Reven, L, “Self-Assembly of Carboxyalkylphosphonic Acids on Metal Oxide Powders.” Langmuir, 18 5205–5212 (2002)

    Article  Google Scholar 

  9. Pramanik, N, Mohapartra, S, Bhargava, P, Pramanik, P, “Chemical Synthesis and Characterization of Hydroxyapatite (HAp)-poly (Ethylene co Vinyl Alcohol) (EVA) Nanocomposite Using a Phosphonic Acid Coupling Agent for Orthopedic Applications.” Mater. Sci. Eng. C, 29 (228) 236 (2009)

    Google Scholar 

  10. Pramanik, N, Mohapatra, S, Pramanik, P, “Processing and Properties of Nano-Hydroxyapatite(n-HAp)/Poly(Ethylene-Co-Acrylic Acid)(EAA) Composite Using a Phosphonic Acid Coupling Agent for Orthopedic Applications.” J. Am. Ceram. Soc., 90 369–375 (2007)

    Article  Google Scholar 

  11. Ganguli, A, Steward, C, Butler, SL, Philips, GJ, Meikle, ST, Lloyd, AW, Grant, MH, “Bacterial Adhesion to Bisphosphonate Coated Hydroxyapatite.” J. Mater. Sci. Mater. Med., 16 283–287 (2005)

    Article  Google Scholar 

  12. Ye, H-J, Shao, W-Z, Zhen, L, “Tetradecylphosphonic Acid Modified BaTiO3 Nanoparticles and Its Nanocomposite.” Colloids Surf. A Physicochem. Eng. Asp., 427 19–25 (2013)

    Article  Google Scholar 

  13. Kim, P, Jones, SC, Hotchkiss, PJ, Haddock, JN, Kippelen, B, Marder, SR, Perry, JW, “Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength.” Adv. Mater., 19 1001–1005 (2007)

    Article  Google Scholar 

  14. Durmus, Z, Erdemi, H, Aslan, A, Toprak, MS, Sozeri, H, Baykal, A, “Synthesis and Characterization of Poly (Vinyl Phosphonic Acid)(PVPA)–Fe3O4 Nanocomposite.” Polyhedron, 30 419–426 (2011)

    Article  Google Scholar 

  15. Mohapatra, S, Pramanik, P, “Synthesis and Stability of Functionalized Iron Oxide Nanoparticles Using Organophosphorus Coupling Agents.” Colloids Surf. A: Physicochem. Eng. Asp., 339 35–42 (2009)

    Article  Google Scholar 

  16. Sengel, SB, Sahiner, N, “Poly(Vinyl Phosphonic Acid) Nanogels with Tailored Properties and Their Use for Biomedical and Environmental Applications.” Eur. Polym. J., 75 264–275 (2016)

    Article  Google Scholar 

  17. Wu, D, Sun, Y, Wang, Q, “Adsorption of Lanthanum (III) from Aqueous Solution Using 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester-Grafted Magnetic Silica Nanocomposites.” J. Hazard. Mater., 260 409–419 (2013)

    Article  Google Scholar 

  18. Pauly, CS, Geni, A-C, Alauzun, JG, Jestin, J, Sztucki, M, Mutin, PH, Oberdisse, J, “Structure of Alumina-Silica Nanoparticles Grafted with Alkylphosphonic Acids in Poly(Ethylacrylate) Nanocomposites.” Polymer, 97 138–146 (2016)

    Article  Google Scholar 

  19. Miyatake, K, Hay, AS, “New Poly (Arylene Ether)s with Pendant Phosphonic Acid Groups.” J. Polym. Sci. Part A Polym. Chem., 39 3770–3779 (2001)

    Article  Google Scholar 

  20. Ehrhardt, C, Fettkenhauer, C, Glenneberg, J, Munchgesang, W, Pientschke, C, Großmann, T, Zenkner, M, Wagner, G, Leipner, HS, Buchsteiner, A, Diestelhorst, M, Lemm, S, Beige, H, Ebbinghaus, SG, “A Solution-Based Approach to Composite Dielectric Films of Surface Functionalized CaCu3Ti4O12 and P (VDF-HFP).” Mater. Sci. Eng. B, 178 881–888 (2013)

    Article  Google Scholar 

  21. Abouzari-Lotf, E, Ghassemi, H, Shockravi, A, Zawodzinski, T, Schiraldi, D, “Phosphonated Poly (Arylene Ether)s as Potential High Temperature Proton Conducting Materials.” Polymer, 52 4709–4717 (2011)

    Article  Google Scholar 

  22. D’eon, JC, Marbury, SA, “Uptake and Elimination of Perfluorinated Phosphonic Acids in the Rat.” Environ. Toxicol. Chem., 29 1319–1329 (2010)

    Google Scholar 

  23. Zhu, S-Z, Jin, G-F, DeMarteau, DD, “Synthesis of a Novel Perfluorinated Vinyl Ether Containing Sulfonimide and Phosphonic Acid Functionalities.” Chin. J. Chem., 20 1268–1273 (2002)

    Article  Google Scholar 

  24. Li, H, Ratcliff, EL, Sigdel, AK, Giordano, AJ, Marder, SR, Berry, JJ, Bredas, J-L, “Modification of the Gallium‐Doped Zinc Oxide Surface with Self‐Assembled Monolayers of Phosphonic Acids: A Joint Theoretical and Experimental Study.” Adv. Funct. Mater., 24 3593–3603 (2014)

    Article  Google Scholar 

  25. Yuan, C, Li, S, Li, C, Chen, S, Huang, W, Wang, G, Pan, C, Zhang, Y, “New Strategy for the Synthesis of Functionalized Phosphonic Acids.” Heteroat. Chem., 8 103–122 (1997)

    Article  Google Scholar 

  26. D’eon, JC, Crozier, PW, VI, Furdui, Reiner, EJ, Libelo, EL, Mabury, SA, “Perfluorinated Phosphonic Acids in Canadian Surface Waters and Wastewater Treatment Plant Effluent: Discovery of a New Class of Perfluorinated Acids.” Environ. Toxicol. Chem., 28 2101–2107 (2009)

    Article  Google Scholar 

  27. David, G, Boyer, C, Tayouo, R, Seabrook, S, Amuduri, B, Boutevin, B, Woodward, G, Destarac, M, “A Process for Polymerizing Vinyl Phosphonic Acid with C6F13I Perfluoroalkyl Iodide Chain‐Transfer Agent.” Macromol. Chem. Phys., 209 75–83 (2008)

    Article  Google Scholar 

  28. Sawada, H, “Preparation and Applications of Novel Fluoroalkyl End-Capped Oligomeric Nanocomposites.” Polym. Chem., 3 46–65 (2012)

    Article  Google Scholar 

  29. Sawada, H, Tamada, D, Kawase, T, Hayakawa, Y, Baba, M, “Synthesis of Novel Fluoroalkylated Oligomers Containing Phosphinico Segments: A New Approach to Functional Materials Possessing Anti-HIV 1 Activity.” Macromolecules, 30 6706–6708 (1997)

    Article  Google Scholar 

  30. Sawada, H, Tamada, D, Kawase, T, Hayakawa, Y, Lee, K, Kyokane, J, Baba, M, “Synthesis and Properties of Novel Fluoroalkyl End‐Capped Oligomers Containing Phosphorus Segments.” J. Appl. Polym. Sci., 79 228–245 (2001)

    Article  Google Scholar 

  31. Yoshioka, H, Ohnishi, K, Sawada, H, “Preparation of Fluoroalkyl End-Capped Oligomers/Magnetite Nanocomposites Possessing a Good Dispersibility and Stability.” J. Fluor. Chem., 128 1104–1111 (2007)

    Article  Google Scholar 

  32. Sawada, H, “Fluorinated Peroxides.” Chem. Rev., 96 1779–1808 (1996)

    Article  Google Scholar 

  33. Sawada, H, “Synthesis of Self-Assembled Fluoroalkyl End-capped Oligomeric Aggregates—Applications of These Aggregates to Fluorinated Oligomeric Nanocomposites.” Prog. Polym. Sci., 32 509–533 (2007)

    Article  Google Scholar 

  34. Sawada, H, “Novel Self-Assembled Molecular Aggregates Formed by Fluoroalkyl End-Capped Oligomers and Their Application.” J. Fluor. Chem., 121 111–130 (2003)

    Article  Google Scholar 

  35. Sawada, H, Nakayama, M, “Synthesis of Fluorine-Containing Organosilicon Oligomers.” J. Chem. Soc. Chem. Commun., 10 677–678 (1991)

    Article  Google Scholar 

  36. Dams, R, Hintzer, K, “Industrial Aspects of Fluorinated Oligomers and Polymers.” In: Ameduri, B, Sawada, H (eds.) Volume 2: Applications, Chap. 1, pp. 3–31. RSC, London (2016)

    Google Scholar 

  37. Wang, Z, Cousins, IT, Scheringer, M, Hungerbuhler, K, “Fluorinated Alternatives to Long-Chain Perfluoroalkyl Carboxylic Acids (PFCAs), Perfluoroalkane Sulfonic Acids (PFSAs) and Their Potential Precursors.” Environ. Int., 60 242–248 (2013)

    Article  Google Scholar 

  38. Si, Y, Guo, Z, “Superwetting Materials of Oil–Water Emulsion Separation.” Chem. Lett., 44 874–883 (2015)

    Article  Google Scholar 

  39. Li, J, Wan, H, Ye, Y, Zhou, H, Chen, J, “One-Step Process to Fabrication of Transparent Superhydrophobic SiO2 Paper.” Appl. Surf. Sci., 261 470–472 (2012)

    Article  Google Scholar 

  40. Zhang, M, Wang, C, Wang, S, Shi, Y, Li, J, “Fabrication of Coral-Like Superhydrophobic Coating on Filter Paper for Water–Oil Separation.” Appl. Surf. Sci., 261 764–769 (2012)

    Article  Google Scholar 

  41. Zhang, M, Wang, C, Wang, S, Shi, Y, Li, J, “Fabrication of Superhydrophobic Cotton Textiles for Water–Oil Separation Based on Drop-Coating Route.” Carbohydr. Polym., 97 59–64 (2013)

    Article  Google Scholar 

  42. Arbatan, T, Zhang, L, Fang, X-Y, Shen, W, “Cellulose Nanofibers as Binder for Fabrication of Superhydrophobic Paper.” Chem. Eng. J., 210 74–84 (2012)

    Article  Google Scholar 

  43. Liu, K, Tian, Y, Jiang, L, “Bio-inspired Superoleophobic and Smart Materials: Design, Fabrication, and Application.” Prog. Mater. Sci., 58 503–564 (2013)

    Article  Google Scholar 

  44. Darmanin, T, Guittard, F, “Wettability of Conducting Polymers: From Superhydrophilicity to Superoleophobicity.” Prog. Polym. Sci., 39 656–682 (2014)

    Article  Google Scholar 

  45. Deng, X, Mammen, L, Butt, H-J, Vollmer, D, “Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating.” Science, 335 67–70 (2012)

    Article  Google Scholar 

  46. Yao, X, Song, Y, Jiang, L, “Applications of Bio‐inspired Special Wettable Surfaces.” Adv. Mater., 23 719–734 (2011)

    Article  Google Scholar 

  47. Feng, J, Huang, B, Zhong, M, “Fabrication of Superhydrophobic and Heat-Insulating Antimony Doped Tin Oxide/Polyurethane Films by Cast Replica Micromolding.” J. Colloid Interface Sci., 336 268–272 (2009)

    Article  Google Scholar 

  48. Taurino, R, Fabbri, E, Messori, M, Pilati, F, Pospiech, D, Synytska, A, “Facile Preparation of Superhydrophobic Coatings by Sol–Gel Processes.” J. Colloid Interface Sci., 325 149–156 (2008)

    Article  Google Scholar 

  49. Kota, AK, Li, Y, Mabry, JM, Tuteja, A, “Hierarchically Structured Superoleophobic Surfaces with Ultralow Contact Angle Hysteresis.” Adv. Mater., 24 5838–5843 (2012)

    Article  Google Scholar 

  50. Sumino, E, Saito, T, Noguchi, T, Sawada, H, “Facile Creation of Superoleophobic and Superhydrophilic Surface by Using Perfluoropolyether Dicarboxylic Acid/Silica Nanocomposites.” Polym. Adv. Technol., 26 345–352 (2015)

    Article  Google Scholar 

  51. Sawada, H, Ikematsu, Y, Kawase, T, Hayakawa, Y, “Synthesis and Surface Properties of Novel Fluoroalkylated Flip-flop-type Silane Coupling Agents.” Langmuir, 12 3529–3530 (1996)

    Article  Google Scholar 

  52. Saito, T, Tsushima, Y, Sawada, H, “Facile Creation of Superoleophobic and Superhydrophilic Surface by Using Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Calcium Silicide Nanocomposites—development of these nanocomposites to Environmental Cyclical Type-Fluorine Recycle Through Formation of Calcium Fluoride.” Colloid Polym. Sci., 293 65–73 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The authors are sincerely grateful to Chelest Co., Ltd. (Osaka, Japan), for supplying PHSP Acids.

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research 16K05891 from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Sawada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, K., Sasahara, S. & Sawada, H. Preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/phosphonic acids nanocomposites possessing superoleophobic/superhydrophilic and superoleophilic/superhydrophobic characteristics: application of these nanocomposites to the separation of oil and water. J Coat Technol Res 14, 1183–1193 (2017). https://doi.org/10.1007/s11998-016-9910-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9910-5

Keywords

Navigation