Skip to main content

Advertisement

Log in

Spray-assisted layer-by-layer assembly of decorated PEI/PAA films: morphological, growth and mechanical behavior

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The development and study of new smart materials is an emergent research area with high potential applications. In this study, we have fabricated poly(ethyleneimine)/poly(acrylic acid) multilayer films on glass substrates by automated spray-layer-by-layer (spray-LbL) technique. By analyzing the changes in thickness, roughness and elasticity, with fine-tuning of the operational parameters of the spray-LbL system, evident trends of its effect on the multilayer construction were observed. In the case of its mechanical properties, the stability of Young’s modulus (up to 8.25 GPa) from film thickness at this scale was detected, making it variable for other factors such as pH and molecular weight. This work also identified the healability phenomenon that is present in the exponentially grown PEI/PAA samples, based on the reduction in viscosity of the polymer complexes and the interdiffusion of polyelectrolytes at the damaged zones in the presence of water. These properties allow for the assembly of a highly electrically conductive multilayered film by dispersion of a top layer of silver nanowires whose sheet resistance is increased around 5% after multiple damaging events. These experimental results provide new data for the evaluation and design of polyelectrolyte multilayers assembled with a spin-assisted automated spray deposition system to serve as substrates for mechanoelectrical devices which can benefit from its self-healing and modulated mechanical capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hara, M, Polyelectrolytes: Science and Technology. Marcel Dekker, New York (1992)

    Google Scholar 

  2. Fang, M, Kaschak, DM, Sutorik, AC, Mallouk, TE, “A ‘Mix and Match’ Ionic-covalent Strategy for Self-Assembly of Inorganic Multilayer Films.” J. Am. Chem. Soc., 119 (50) 12184–12191 (1997)

    Article  Google Scholar 

  3. Huang, X, Bolen, MJ, Zacharia, NS, “Omniphobic Slippery Coatings Based on Lubricant-Infused Porous Polyelectrolyte Multilayers.” ACS Macro Lett., 2 826–829 (2013)

    Article  Google Scholar 

  4. Wang, L, Wang, X, Xu, M, Chen, D, Sun, J, “Layer-by-Layer Assembled Microgel Films with High Loading Capacity: Reversible Loading and Release of Dyes and Nanoparticles.” Langmuir, 24 (5) 1902–1909 (2008)

    Article  Google Scholar 

  5. Decher, G, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites.” Science, 277 (5330) 1232–1237 (1997)

    Article  Google Scholar 

  6. Bertrand, P, Jonas, A, Laschewsky, A, Legras, R, “Ultrathin Polymer Coatings by Complexation of Polyelectrolytes at Interfaces: Suitable Materials, Structure and Properties.” Macromol. Rapid Comm., 21 (7) 319–348 (2000)

    Article  Google Scholar 

  7. Cho, J, Hong, J, Char, K, Caruso, F, “Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties.” J. Am. Chem. Soc., 128 (30) 9935–9942 (2006)

    Article  Google Scholar 

  8. Wang, Y, Joshi, PP, Hobbs, KL, Johnson, MB, Schmidtke, DW, “Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers.” Langmuir, 22 (23) 9776–9783 (2006)

    Article  Google Scholar 

  9. Kang, EH, Jin, P, Yang, Y, Sun, J, Shen, J, “A Facile Room Temperature Layer-by-Layer Deposition Process for the Fabrication of Ultrathin Films with Noncentrosymmetrically Oriented Azobenzene Chromophores.” Chem. Commun., 41 4332–4334 (2006)

    Article  Google Scholar 

  10. Lowman, GM, Tokuhisa, H, Lutkenhaus, JL, Hammond, PT, “Novel Solid-State Polymer Electrolyte Consisting of a Porous Layer-by-Layer Polyelectrolyte Thin Film and Oligoethylene Glycol.” Langmuir, 20 (22) 9791–9795 (2004)

    Article  Google Scholar 

  11. Guldi, DM, Zilbermann, I, Anderson, G, Kotov, NA, Tagmatarchis, N, Prato, M, “Nanosized Inorganic/Organic Composites for Solar Energy Conversion.” J. Mater. Chem., 15 114–118 (2005)

    Article  Google Scholar 

  12. Lynn, DM, “Layers of Opportunity: Nanostructured Polymer Assemblies for the Delivery of Macromolecular Therapeutics.” Soft Matter, 2 269–273 (2006)

    Article  Google Scholar 

  13. Langer, R, “New Methods of Drug Delivery.” Science, 249 (4976) 1527–1533 (1990)

    Article  Google Scholar 

  14. Nakajima, A, Hashimoto, K, Watanabe, T, Takai, K, Yamauchi, G, Fujishima, A, “Transparent Superhydrophobic Thin Films with Self-cleaning Properties.” Langmuir, 16 (17) 7044–7047 (2000)

    Article  Google Scholar 

  15. Spaetha, M, Barthlott, W, “Lotus-Effect: Biomimetic Super-Hydrophobic Surfaces and Their Application.” Adv. Sci. Technol., 60 38–46 (2008)

    Article  Google Scholar 

  16. Koch, K, Bhushan, B, Ensikat, HJ, Barthlott, W, “Self-healing of Voids in the Wax Coating on Plant Surfaces.” Phil. Trans. R. Soc. A, 367 (1894) 1673–1688 (2009)

    Article  Google Scholar 

  17. Li, Y, Chen, S, Wu, M, Sun, J, “Polyelectrolyte Multilayers Impart Healability to Highly Electrically Conductive Films.” Adv. Mater., 24 (33) 4578–4582 (2012)

    Article  Google Scholar 

  18. Hager, MD, Greil, P, Leyens, C, van der Zwaag, S, Schubert, US, “Self-healing Materials.” Adv. Mater., 22 (47) 5424–5430 (2010)

    Article  Google Scholar 

  19. Burattini, S, Greenland, BW, Hayes, W, Mackay, ME, Rowan, SJ, Colquhoun, HM, “A Supramolecular Polymer Based on Tweezer-Type Stacking Interactions: Molecular Design for Healability and Enhanced Toughness.” Chemistry of Materials, 23 (1) 6–8 (2011)

    Article  Google Scholar 

  20. Toohey, KS, Sottos, NR, Lewis, JA, Moore, JS, White, SR, “Self-healing Materials with Microvascular Networks.” Nat Mater, 6 (8) 581–585 (2007)

    Article  Google Scholar 

  21. Shchukin, DG, Mohwald, H, “Self-repairing Coatings Containing Active Nanoreservoirs.” Small, 3 (6) 926–943 (2007)

    Article  Google Scholar 

  22. Shchukin, DG, Zheludkevich, M, Yasakau, K, Lamaka, S, Ferreira, MGS, Mohwald, H, “Layer-by-Layer Assembled Nanocontainers for Self-healing Corrosion Protection.” Adv. Mater., 18 (13) 1672–1678 (2006)

    Article  Google Scholar 

  23. Williams, KA, Boydston, AJ, Bielawski, CW, “Towards Electrically Conductive, Self-healing Materials.” J. R. Soc. Interface, 4 (13) 359–362 (2007)

    Article  Google Scholar 

  24. Caruso, MM, Schelkopf, SR, Jackson, AC, Landry, AM, Braun, PV, Moore, JS, “Microcapsules Containing Suspensions of Carbon Nanotubes.” J. Mater. Chem., 19 6093–6096 (2009)

    Article  Google Scholar 

  25. Huang, X, Bolen, MJ, Zacharia, NS, “Silver Nanoparticle Aided Self-healing of Polyelectrolyte Multilayers.” Phys. Chem. Chem. Phys., 16 10267 (2014)

    Article  Google Scholar 

  26. South, A, Lyon, LA, “Autonomic Self-healing of Hydrogel Thin Films.” Angew. Chem. Int. Ed., 49 (4) 767–771 (2010)

    Article  Google Scholar 

  27. Wang, X, Liu, F, Zheng, X, Sun, J, “Water-Enabled Self-healing of Polyelectrolyte Multilayer Coatings.” Angew. Chem. Int. Ed., 50 (48) 11378–11381 (2011)

    Article  Google Scholar 

  28. Wang, SD, Huang, FH, “Antireflection Coatings Formed from Polyelectrolyte Multilayers on PMMA Substrate.” Surface Engineering, 27 (4) 279–285 (2011)

    Google Scholar 

  29. Schlenof, JB, Dubas, ST, Farhat, T, “Sprayed Polyelectrolyte Multilayers.” Langmuir, 16 (26) 9968–9969 (2000)

    Article  Google Scholar 

  30. Krogman, KC, Lyon, KF, Hammond, PT, “Metal Ion Reactive Thin Films Using Spray Electrostatic LBL Assembly.” J. Phys. Chem. B, 112 (46) 14453–14460 (2008)

    Article  Google Scholar 

  31. Elosua, C, Lopez-Torres, D, Hernaez, M, Matias, IR, Arregui, FJ, “Comparative Study of Layer-by-Layer Deposition Techniques for Poly(Sodium Phosphate) and Poly(Allylamine Hydrochloride).” Nanoscale Res Lett, 8 539 (2013)

    Article  Google Scholar 

  32. Lefort, M, Jierry, L, Boulmedais, F, Benmlih, K, Lavalle, P, Senger, B, Voegel, JC, Hemmerlé, J, Ponche, A, Schaaf, P, “Nanosized Films Based on Multicharged Small Molecules and Oppositely Charged Polyelectrolytes Obtained by Simultaneous Spray Coating of Interacting Species.” Langmuir, 29 (47) 14536–14544 (2013)

    Article  Google Scholar 

  33. Bruening, M, Dotzauer, D, “Polymer Films: Just Spray It.” Nat Mater, 8 (6) 449–450 (2009)

    Article  Google Scholar 

  34. Ven, TGMVD, “Kinetic Aspects of Polymer and Polyelectrolyte Adsorption on Surfaces.” Adv. Colloid Interface Sci., 48 121–140 (1994)

    Article  Google Scholar 

  35. Krogman, KC, Zacharia, NS, Schroeder, S, Hammond, PT, “Automated Process for Improved Uniformity and Versatility of Layer by-Layer Deposition.” Langmuir, 23 3137–3141 (2007)

    Article  Google Scholar 

  36. Abramoff, MD, Magalhaes, PJ, Ram, SJ, “Image Processing with ImageJ.” Biophotonics International, 11 (7) 36–42 (2004)

    Google Scholar 

  37. Lienkamp, K, Kins, CF, Alfred, SF, Madkour, AE, Tew, GN, “Water-Soluble Polymers From Acid-Functionalized Norbornenes.” J. Polym. Sci. A Polym. Chem., 47 1266–1273 (2009)

    Article  Google Scholar 

  38. Ikonen, M, Murtomaki, L, Kontturi, K, “Controlled Complexation of Plasmid DNA with Cationic Polymers: Effect of Surfactant on the Complexation and Stability of the Complexes.” Colloids Surf., B, 66 77–83 (2008)

    Article  Google Scholar 

  39. Izquierdo, A, Ono, SS, Voegel, JC, Schaaf, P, Decher, G, “Dipping Versus Spraying: Exploring the Deposition Conditions for Speeding up Layer-by-Layer Assembly.” Langmuir, 21 (16) 7558–7567 (2005)

    Article  Google Scholar 

  40. Liu, CH, Yu, X, “Silver Nanowire-Based Transparent, Flexible, and Conductive Thin Film.” Nanoscale Res. Lett., 6 75 (2011)

    Article  Google Scholar 

  41. De, S, Higgins, TM, Lyons, PE, Doherty, EM, Nirmalraj, PM, Blau, WJ, Boland, JJ, Coleman, JN, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios.” ACS Nano, 3 (7) 1767–1774 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The project described was supported by CAT-120 Research Program by Tecnologico de Monterrey, CONACYT-Mexico Award Number (168813) and PAICYT-UANL 2015 Grant Number (IT 489-15).

Funding was provided by Consejo Nacional de Ciencia y Tecnología (Grant No. 169319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-Luis Menchaca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 19628 kb)

Supplementary material 2 (DOCX 12277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, E., Zavala, G., Gracia-Pinilla, M.A. et al. Spray-assisted layer-by-layer assembly of decorated PEI/PAA films: morphological, growth and mechanical behavior. J Coat Technol Res 14, 927–935 (2017). https://doi.org/10.1007/s11998-016-9896-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9896-z

Keywords

Navigation