Skip to main content

Effects of adding TiO2 nanoparticles to a water-based varnish for wood applied to nine tropical woods of Costa Rica exposed to natural and accelerated weathering

Abstract

The addition of titanium dioxide nanoparticles (TiO2 nanoparticles) to a water-based varnish used for finishing tropical woods was studied. Three different concentrations of TiO2 nanoparticles (0%, 1.0%, and 1.5%) were evaluated. The nanoparticles were characterized by means of the transmission electron microscopy and an X-ray diffractometer. The varnish prepared was evaluated for its viscosity, adhesion of the film to the wood, water absorption, and the effects of natural weathering on the color and quality of the varnish. It was found that viscosity decreases as the concentration of TiO2 nanoparticles increases, while no variation was found in the thickness of the film. Except for Gmelina arborea and Tectona grandis, the adhesion was not statistically affected. It was found that, in the 9 species tested, incorporation of TiO2 nanoparticles decreased the values of water absorption. The evaluation of natural weathering showed that the varnish with no added TiO2 nanoparticles degraded completely after 1 year of weathering exposure, while the modified varnish film endured. Less color change was observed in lumber treated with the varnish containing TiO2 nanoparticles. The best performance of the varnish in the nine tropical woods used was observed when TiO2 nanoparticles were added at 1.5% concentration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Veigel, S, Grüll, G, Pinkl, S, Obersriebnig, M, Müller, U, Gindl-Altmutter, W, “Improving the Mechanical Resistance of Waterborne Wood Coatings by Adding Cellulose Nanofibers.” React. Funct. Polym., 85 214–220 (2014)

    Article  Google Scholar 

  2. Kaygin, B, Akgun, E, “Comparison of Conventional Varnishes with Nanolacke UV Varnish with Respect to Hardness and Adhesion Durability.” Int. J. Mol. Sci., 9 476–485 (2008)

    Article  Google Scholar 

  3. Fufa, SM, Jelle, BP, Hovde, PJ, Rørvik, PM, “Coated Wooden Claddings and the Influence of Nanoparticles on the Weathering Performance.” Prog. Org. Coat., 75 72–78 (2012)

    Article  Google Scholar 

  4. Corcione, CE, Frigione, M, “UV-Cured Polymer-Boehmite Nanocomposite as Protective Coating for Wood Elements.” Prog. Org. Coat., 74 781–787 (2012)

    Article  Google Scholar 

  5. Roussak, OV, Gesser, HD, “Adhesives and Adhesion.” In: Roussak, OV, Gesser, HD (eds.) Applied Chemistry: A Textbook for Engineers and Technologists, pp. 219–232. Springer Science & Business Media, New York (2013)

    Chapter  Google Scholar 

  6. Peruzzo, PJ, Bonnefond, A, Reyes, Y, Fernández, M, Fare, J, Ronne, E, Leiza, JR, “Beneficial In Situ Incorporation of Nano-clay to Waterborne PVAc/PVOH Dispersion Adhesives for Wood Applications.” Int. J. Adhes. Adhes., 48 295–302 (2014)

    Article  Google Scholar 

  7. Vlad-Cristea, M, Riedl, B, Blanchet, P, Jimenez-Pique, E, “Nanocharacterization Techniques for Investigating the Durability of Wood Coatings.” Eur. Polym. J., 48 441–453 (2012)

    Article  Google Scholar 

  8. Gornicka, B, Sieradzka, K, “Barrier Properties of Impregnating Varnishes with Nanosilica.” J. Phys., 146 (1) 12016–12023 (2009)

    Google Scholar 

  9. Cristea, MV, Riedl, B, Blanchet, P, “Enhancing the Performance of Exterior Waterborne Coatings for Wood by Inorganic Nanosized UV Absorbers.” Prog. Org. Coat., 69 432–441 (2010)

    Article  Google Scholar 

  10. Salla, J, Pandey, KK, Srinivas, K, “Improvement of UV Resistance of Wood Surfaces by Using ZnO Nanoparticles.” Polym. Degrad. Stab., 97 592–596 (2012)

    Article  Google Scholar 

  11. Veronovski, N, Verhovšek, D, Godnjavec, J, “The Influence of Surface-Treated Nano-TiO2 (Rutile) Incorporation in Water-Based Acrylic Coatings on Wood Protection.” Wood Sci. Technol., 47 317–328 (2013)

    Article  Google Scholar 

  12. Sun, Q, Lu, Y, Zhang, H, Zhao, H, Yu, H, Xu, J, Liu, Y, “Hydrothermal Fabrication of Rutile TiO2 Submicrospheres on Wood Surface: An Efficient Method to Prepare UV-Protective Wood.” Mater. Chem. Phys., 133 253–258 (2012)

    Article  Google Scholar 

  13. Nikolic, M, Lawther, JM, Sanadi, AR, “Use of Nanofillers in Wood Coatings: A Scientific Review.” J. Coat. Technol. Res., 12 445–461 (2015)

    Article  Google Scholar 

  14. Zhang, YS, Yin, HB, Wang, AL, Ren, M, Gu, ZM, Liu, YM, Shen, YT, Yu, LB, Jiang, TS, “Deposition and Characterization of Binary Al2O3/SiO2 Coating Layers on the Surfaces of Rutile TiO2 and the Pigmentary Properties.” Appl. Surf. Sci., 257 (4) 1351–1360 (2010)

    Article  Google Scholar 

  15. Liu, YM, Ge, C, Ren, M, Yin, HB, Wang, AL, Zhang, DZ, Liu, CY, Chen, J, Feng, H, Yao, HP, Jiang, TS, “Effects of Coating Parameters on the Morphology of SiO2-Coated TiO2 and the Pigmentary Properties.” Appl. Surf. Sci., 254 (9) 2809–2819 (2008)

    Article  Google Scholar 

  16. Petit, B, Montagnini, F, “Growth Equations and Rotation Ages of Ten Native Tree Species in Mixed and Pure Plantations in the Humid Neotropics.” For. Ecol. Manag., 199 243–257 (2004)

    Article  Google Scholar 

  17. Moya, R, Muñoz, F, “Physical and Mechanical Properties of Eight Species from Fast-Growth Plantation in Costa Rica.” J. Trop. For. Sci., 22 317–328 (2010)

    Google Scholar 

  18. Oltean, L, Teischinger, A, Hansmann, C, “Wood Surface Discoloration Due to Simulated Indoor Sunlight Exposure.” Holz als Werkst, 66 51–56 (2008)

    Article  Google Scholar 

  19. Tolvaj, L, Mitsui, K, “Light Source Dependence of the Photodegradation of Wood.” Wood Sci. Technol., 51 468–473 (2005)

    Article  Google Scholar 

  20. Petric, M, Kricej, B, Humar, M, Pavlic, M, Tomazic, M, “Patination of Cherry Wood and Spruce Wood with Ethanolamine and Surface Finishes.” Surf. Coat. Int. PT B-C, 87 195–201 (2004)

    Article  Google Scholar 

  21. Deka, M, Humar, M, Kricej, GB, Petric, M, “Effects of UV Light Irradiation on Color Stability of Thermally Modified, Copper Ethanolamine Treated and Non-modified Wood: EPR and DRIFT Spectroscopic Studies.” Wood Sci. Technol., 42 5–20 (2008)

    Article  Google Scholar 

  22. Ahajji, A, Diouf, PN, Aloui, F, Elbakali, I, Perrin, D, Merlin, A, George, B, “Influence of Heat Treatment on Antioxidant Properties and Color Stability of Beech and Spruce Wood and Their Extractives.” Wood Sci. Technol., 43 69–83 (2009)

    Article  Google Scholar 

  23. Valverde, JC, Moya, R, “Efectos de la intemperie en el color de dos acabados aplicados en madera de Cedrela odorata y Carapa guianensis.” Maderas Cienc. Tecnol., 12 (3) 171–180 (2010)

    Article  Google Scholar 

  24. Valverde, JC, Moya, R, “Correlation and Modeling Between Color Variation and Quality of the Surface Between Accelerated and Natural Tropical Weathering in Acacia mangium, Cedrela odorata and Tectona grandis Wood with Two Coatings.” Color Res. Appl., 39 519–529 (2014)

    Article  Google Scholar 

  25. Salas, C, Moya, R, Vargas, L, “Optical Performance of Finished and Unfinished Tropical Timbers Exposed to UV Light in the Field in Costa Rica.” Wood Mater. Sci. Eng., 11 (2) 62–68 (2016)

    Article  Google Scholar 

  26. Schnabel, T, Zimmer, B, Petutschnigg, AJ, “On the Modelling of Color Changes of Wood Surfaces.” J. Wood Prod., 67 141–149 (2009)

    Article  Google Scholar 

  27. Diener, BJ, Saklad, H, “Portico, S.A.” J. Bus. Res., 38 (1) 89–96 (1997)

    Article  Google Scholar 

  28. Moya, R, Rodríguez-Zúñiga, A, Vega-Baudrit, J, Alvarez, V, “Effects of Adding Nano-clay (Montmorillonite) on Performance of Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Adhesives in Carapa guianensis, a Tropical Species.” Int. J. Adhes. Adhes., 59 62–70 (2015)

    Article  Google Scholar 

  29. Moya R, Rodríguez-Zúñiga A, Vega-Baudrit J, “Effects of adding nano-clay in polyvinyl acetate and urea-formaldehyde adhesives on tropical wood shear resistance.” Int. J. Nanotechnol. (Submitted, 2015)

  30. ASTM D2256-11, Standard Test Method for Apparent Viscosity of Adhesives Having Shear-Rate-Dependent Flow Properties Using Rotational Viscometry, USA (2011)

  31. ASTM D6132-13, Nondestructive Measurement of Dry Film Thickness of Applied Organic Coatings Using an Ultrasonic Coating Thickness Gage, USA (2013)

  32. ASTM D3359-09, Standard Test Methods for Measuring Adhesion by Tape Test, USA (2009)

  33. Kowalczyk, K, “Preparation and Characterization of Nanocomposite Uralkyd Varnishes for a Wood Substrate.” J. Coat. Technol. Res., 11 (3) 421–430 (2014)

    Article  Google Scholar 

  34. Ekstedt, J, Östberg, G, “Liquid Water Permeability of Exterior Wood Coatings-Testing According to a Proposed European Standard Method.” J. Coat. Technol., 73 (914) 53–59 (2001)

    Article  Google Scholar 

  35. ASTM G154-12a, Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials, USA (2015)

  36. ASTM D 2244. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates, USA (2013)

  37. Moya, R, Rodriguez-Zuñiga, A, Vega-Baudrit, J, “Effects of Adding Multiwall Carbon-Nanotubes (MWCNT) on Performance of Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Adhesives in Tropical Timber Species.” J. Nanomater., 16 290 (2015)

    Google Scholar 

  38. Kim, HS, Lee, JW, Yantara, N, Boix, PP, Kulkarni, SA, Mhaisalkar, S, Park, NG, “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer.” Nano Lett., 13 (6) 2412–2417 (2013)

    Article  Google Scholar 

  39. Tahir, M, Theato, P, Oberle, P, Melnyk, G, Faiss, S, Kolb, U, Janshoff, A, Stepputat, M, Tremel, W, “Facile Synthesis and Characterization of Functionalized, Monocrystalline Rutile TiO2 Nanorods.” Langmuir, 22 5209–5212 (2006)

    Article  Google Scholar 

  40. Vatanpour, V, Madaeni, SS, Khataee, AR, Salehi, E, Zinadini, S, Monfared, HA, “TiO2 Embedded Mixed Matrix PES Nanocomposite Membranes: Influence of Different Sizes and Types of Nanoparticles on Antifouling and Performance.” Desalination, 292 19–29 (2012)

    Article  Google Scholar 

  41. Li, JF, Xu, ZL, Yang, H, Yu, LY, Liu, M, “Effect of TiO2 Nanoparticles on the Surface Morphology and Performance of Microporous PES Membrane.” Appl. Surf. Sci., 255 (9) 4725–4732 (2009)

    Article  Google Scholar 

  42. Sun, Q, Lu, Y, Tu, J, Yang, D, Cao, J, Li, J, “Bulky Macroporous TiO2 Photocatalyst with Cellular Structure Via Facile Wood-Template Method.” Int. J. Photoenerg, (2013). doi:10.1155/2013/649540

    Google Scholar 

  43. Tracton, AA, Coatings Technology Handbook. CRC Press Taylor and Francis Group, FL (2005)

    Book  Google Scholar 

  44. Chan, WR, Magnus, KE, Mootoo, BS, “Extractives from Cedrela odorata L. the Structure of Methyl Angolensate.” J. Chem. Soc. C Org., 1967 171–177 (1967)

    Article  Google Scholar 

  45. Parra, A, Quiñones, JG, Rodríguez, H, Ybarra, E, “Natural Weathering of Eight Important Timber Trade Mexican Species.” Int. J. Agricult. Policy Res., 3 29–38 (2015)

    Google Scholar 

  46. Ahola, P, “Moisture Transport in Wood Coated with Joinery Paints.” Holz Roh Werk., 49 428–432 (1991)

    Article  Google Scholar 

  47. Eligon, AM, Achong, A, Saunders, R, “Moisture Adsorption and Desorption Properties of Some Tropical Woods.” J. Mater. Sci., 27 3442–3456 (1992)

    Article  Google Scholar 

  48. Chauhan, SS, Aggarwal, P, “Effect of Moisture Sorption State on Transverse Dimensional Changes in Wood.” Holz. Roh. Werk., 62 50–55 (2004)

    Article  Google Scholar 

  49. Creemers, J, de Meijer, M, Zimmermann, T, Sell, J, “Influence of Climatic Factors on the Weathering of Coated Wood.” Holz. Roh. Werk., 60 411–420 (2002)

    Article  Google Scholar 

  50. Chung-Yun, H, Mon-Lin, K, “Influence of Extractives on Wood Gluing and Finishing—A Review.” For. Prod. J., 38 52–56 (1988)

    Google Scholar 

  51. George, B, Suttel, E, Merlin, A, Deglise, X, “Photodegradation and Photostabilitation of Wood: The State of Art.” Polym. Degrad. Stab., 88 268–274 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Vicerrectoría de Investigación y Extensión at the Instituto Tecnológico de Costa Rica (ITCR) for the financial support provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róger Moya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moya, R., Rodríguez-Zúñiga, A., Vega-Baudrit, J. et al. Effects of adding TiO2 nanoparticles to a water-based varnish for wood applied to nine tropical woods of Costa Rica exposed to natural and accelerated weathering. J Coat Technol Res 14, 141–152 (2017). https://doi.org/10.1007/s11998-016-9848-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9848-7

Keywords

  • Coating
  • Nanotechnology
  • Tropical species
  • Additives
  • XRD spectrum