Uniform color coating of multilayered TiO2/Al2O3 films by atomic layer deposition

Abstract

Thin film optics, based on light interference characteristics, are attracting increasing interest because of their ability to enable a functional color coating for various applications in optical, electronic, and solar industries. Here, we report on the dependence of coloring characteristics on single-layer TiO2 thicknesses and alternating TiO2/Al2O3 multilayer structures prepared by atomic layer deposition (ALD) at a low growth temperature. The ALD TiO2 and Al2O3 thin films were studied at a low growth temperature of 80°C. Then, the coloring features in the single-layer TiO2 and alternating TiO2/Al2O3 multilayers using both the ALD processes were experimentally examined on a TiN/cut stainless steel sheet. The Essential Macleod software was used to estimate and compare the color coating results. The simulation results revealed that five different colors of the single TiO2 layers were shown experimentally, depending on the film thickness. For the purpose of highly uniform pink color coating, the film structures of TiO2/Al2O3 multilayers were designed in advance. It was experimentally demonstrated that the evaluated colors corresponded well with the simulated color spectrum results, exhibiting a uniform pink color with wide incident angles ranging from 0° to 75°. This article advances practical applications requiring highly uniform color coatings of surfaces in a variety of optical coating areas with complex topographical structures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    van Nijnatten, PA, “Optical Monitoring Tools and Strategies for Controlling Coating Deposition in Large Area Continuous Coating Processes.” Thin Solid Films, 502 (1–2) 147–152 (2006)

    Article  Google Scholar 

  2. 2.

    Jeong, S-H, Kim, J-K, Kim, B-S, Shim, S-H, Lee, B-T, “Characterization of SiO2 and TiO2 Films Prepared Using rf Magnetron Sputtering and Their Application to Antireflection Coating.” Vacuum, 76 (4) 507–515 (2004)

    Article  Google Scholar 

  3. 3.

    Selj, JH, Mongstad, TT, Søndenå, R, Marstein, ES, “Reduction of Optical Losses in Colored Solar Cells With Multilayer Antireflection Coatings.” Sol. Energy Mater. Sol. Cells, 95 (9) 2576–2582 (2011)

    Article  Google Scholar 

  4. 4.

    Ni, J, Zhao, Q, Zhao, X, “Transparent and High Infrared Reflection Film Having Sandwich Structure of SiO2/Al:ZnO/SiO2.” Prog. Org. Coat., 64 (2–3) 317–321 (2009)

    Article  Google Scholar 

  5. 5.

    Bauer, S, Klippe, L, Rothhaar, U, Kuhr, M, “Optical Multilayers for Ultra-Narrow Bandpass Filters Fabricated by PICVD.” Thin Solid Films, 442 (1–2) 189–193 (2003)

    Article  Google Scholar 

  6. 6.

    Dannenberg, R, Greene, P, “Reactive Sputter Deposition of Titanium Dioxide.” Thin Solid Films, 360 (1–2) 122–127 (2000)

    Article  Google Scholar 

  7. 7.

    Won, D-J, Wang, C-H, Jang, H-K, Choi, D-J, “Effects of Thermally Induced Anatase-To-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties.” Appl. Phys. A, 73 (5) 595–600 (2001)

    Article  Google Scholar 

  8. 8.

    Aarik, J, Aidla, A, Mändar, H, Uustare, T, Schuisky, M, Hårsta, A, “Atomic Layer Growth of Epitaxial TiO2 Thin Films From TiCl4 and H2O on α-Al2O3 Substrates.” J. Cryst. Growth, 242 (1–2) 189–198 (2002)

    Article  Google Scholar 

  9. 9.

    Mitchell, DRG, Attard, DJ, Finnie, KS, Triani, G, Barbé, CJ, Depagne, C, Bartlett, JR, “TEM and Ellipsometry Studies of Nanolaminate Oxide Films Prepared Using Atomic Layer Deposition.” Appl. Surf. Sci., 243 (1–4) 265–277 (2005)

    Article  Google Scholar 

  10. 10.

    Kasikov, A, Aarik, J, Mändar, H, Moppel, M, Pärs, M, Uustare, T, “Refractive Index Gradients in TiO2 Thin Films Grown by Atomic Layer Deposition.” J. Phys. D: Appl. Phys., 39 (1) 54–60 (2006)

    Article  Google Scholar 

  11. 11.

    Shin-ichi, Z, Motokoshi, S, Nakatsuka, M, Yamanaka, T, “Large-Area Optical Coatings with Uniform Thickness Grown by Surface Chemical Reactions for High-Power Laser Applications.” Jpn. J. Appl. Phys., 41 (1R) 160–165 (2002)

    Google Scholar 

  12. 12.

    Tohru, H, Katsunori, Y, Junji, Y, Hiroshi, K, Fumio, K, Kenichi, I, “Fabrication of a ZnSe-Based Vertical Fabry-Perot Cavity Using SiO2/TiO2 Multilayer Reflectors and Resonant Emission Characteristics.” Jpn. J. Appl. Phys., 33 (7A) 3960–3961 (1994)

    Google Scholar 

  13. 13.

    Chao, S, Wang, W-H, Lee, C-C, “Low-Loss Dielectric Mirror with Ion-Beam-Sputtered TiO2–SiO2 Mixed Films.” Appl. Opt., 40 (13) 2177–2182 (2001)

    Article  Google Scholar 

  14. 14.

    Battaglin, C, Caccavale, F, Menelle, A, Montecchi, M, Nichelatti, E, Nicoletti, F, Polato, P, “Characterisation of Antireflective TiO2//SiO2 Coatings by Complementary Techniques.” Thin Solid Films, 351 (1–2) 176–179 (1999)

    Article  Google Scholar 

  15. 15.

    Lee, JH, Jang, GE, Jun, YH, “Investigation and Evaluation of Structural Color of TiO2 Coating on Stainless Steel.” Ceram. Int., 38S S661–S664 (2012)

    Article  Google Scholar 

  16. 16.

    Kim, W-H, Park, S-J, Son, J-Y, Kim, H, “Ru Nanostructure Fabrication Using an Anodic Aluminum Oxide Nanotemplate and Highly Conformal Ru Atomic Layer Deposition.” Nanotechnology, 19 (4) 045302 (2008)

    Article  Google Scholar 

  17. 17.

    Kim, W-H, Lee, H-B-R, Heo, K, Lee, YK, Chung, T-M, Kim, C-G, Hong, S, Heo, J, Kim, H, “Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition.” J. Electrochem. Soc., 158 (1) D1–D5 (2011)

    Article  Google Scholar 

  18. 18.

    Kim, W-H, Oh, I-K, Kim, M-K, Maeng, WJ, Lee, C-W, Lee, G, Lansalot-Matras, C, Noh, W, Thompson, D, Chu, D, Kim, H, “Atomic Layer Deposition of B2O3/SiO2 Thin Films and Their Application in an Efficient Diffusion Doping Process.” J. Mater. Chem. C, 2 (29) 5805–5811 (2014)

    Article  Google Scholar 

  19. 19.

    Ritala, M, Leskelä, M, Johansson, L-S, Niinistö, L, “Atomic Force Microscopy Study of Titanium Dioxide Thin Films Grown by Atomic Layer Epitaxy.” Thin Solid Films, 228 (1) 32–35 (1993)

    Article  Google Scholar 

  20. 20.

    Aarik, J, Aidla, A, Kiisler, A-A, Uustare, T, Sammelselg, V, “Effect of Crystal Structure on Optical Properties of TiO2 Films Grown by Atomic Layer Deposition.” Thin Solid Films, 305 (1–2) 270–273 (1997)

    Article  Google Scholar 

  21. 21.

    Ritala, M, Leskelä, M, Niinistö, L, Prohaska, T, Friedbacher, G, Grasserbauer, M, “Surface Roughness Reduction in Atomic Layer Epitaxy Growth of Titanium Dioxide Thin Films.” Thin Solid Films, 249 (2) 155–162 (1994)

    Article  Google Scholar 

  22. 22.

    Lee, JH, Jang, GE, “Reflectance Enhancement by Multi-layered TiO2/SiO2 Coating on Stainless Steel Substrate for Dye-Sensitized Solar Cells.” J. Ceram. Process. Res., 13 (2) S219–S223 (2012)

    Google Scholar 

  23. 23.

    Lin, C-W, Chen, K-P, Hsiao, C-N, Lin, S, Lee, C-K, “Design and Fabrication of An Alternating Dielectric Multi-layer Device for Surface Plasmon Resonance Sensor.” Sens. Actuators B: Chem., 113 (1) 169–176 (2006)

    Article  Google Scholar 

  24. 24.

    Nam, T, Kim, J-M, Kim, M-K, Kim, H, Kim, W-H, “Low-Temperature Atomic Layer Deposition of TiO2, Al2O3, and ZnO Thin Films.” J. Korean Phys. Soc., 59 (2) 452–457 (2011)

    Google Scholar 

  25. 25.

    Aarik, J, Aidla, A, Mändar, H, Sammelselg, V, “Anomalous Effect of Temperature on Atomic Layer Deposition of Titanium Dioxide.” J. Cryst. Growth, 220 (4) 531–537 (2000)

    Article  Google Scholar 

  26. 26.

    Groner, MD, Fabreguette, FH, Elam, JW, George, SM, “Low-Temperature Al2O3 Atomic Layer Deposition.” Chem. Mater., 16 (4) 639–645 (2004)

    Article  Google Scholar 

  27. 27.

    Hausmann, DM, Kim, E, Becker, J, Gordon, RG, “Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors.” Chem. Mater., 14 (10) 4350–4358 (2002)

    Article  Google Scholar 

  28. 28.

    Lim, GT, Kim, D-H, “Characteristics of TiOx Films Prepared by Chemical Vapor Deposition Using Tetrakis-dimethyl-amido-titanium and Water.” Thin Solid Films, 498 (1–2) 254–258 (2006)

    Article  Google Scholar 

  29. 29.

    Moulder, J, Stickle, W, Sobol, P, Bomben, K, Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corp, Eden Prairie (1992)

    Google Scholar 

  30. 30.

    Hopfengärtner, G, Borgmann, D, Rademacher, I, Wedler, G, Hums, E, Spitznagel, GW, “XPS Studies of Oxidic Model Catalysts: Internal Standards and Oxidation Numbers.” J. Electron. Spectrosc. Relat. Phenom., 63 (2) 91–116 (1993)

    Article  Google Scholar 

  31. 31.

    Nylund, A, Olefjord, I, “Surface Analysis of Oxidized Aluminium. 1. Hydration of Al2O3 and Decomposition of Al(OH)3 in a Vacuum as Studied by ESCA.” Surf. Interface Anal., 21 (5) 283–289 (1994)

    Article  Google Scholar 

  32. 32.

    King, JS, Graugnard, E, Summers, CJ, “TiO2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition.” Adv. Mater., 17 (8) 1010–1013 (2005)

    Article  Google Scholar 

  33. 33.

    Kukli, K, Ritala, M, Leskelä, M, Jokinen, J, “Atomic Layer Epitaxy Growth of Aluminum Oxide Thin Films From a Novel Al(CH3)2Cl Precursor and H2O.” J. Vac. Sci. Technol. A, 15 (4) 2214–2218 (1997)

    Article  Google Scholar 

  34. 34.

    Macleod, HA, Thin-Film Optical Filters. CRC Press, Tucson (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Incheon National University Research Grant in 2013.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Han-Bo-Ram Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, WH., Kim, H. & Lee, HBR. Uniform color coating of multilayered TiO2/Al2O3 films by atomic layer deposition. J Coat Technol Res 14, 177–183 (2017). https://doi.org/10.1007/s11998-016-9840-2

Download citation

Keywords

  • TiO2
  • Al2O3
  • Color coating
  • Atomic layer deposition
  • TiO2/Al2O3 multilayer