Skip to main content
Log in

On the stability of delamination growth at scratching of thin film structures

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Scratching of thin film/substrate structures is studied theoretically and numerically. The results are discussed in connection to delamination initiation and in particular subsequent growth at scratching. The material behavior of the film is described by classical elastoplasticity accounting for large deformations. The deformation of the substrate is neglected indicating that the results are pertinent to soft thin films. The numerical investigation is performed using the finite element method (FEM) and the numerical strategy is discussed in some detail. The results from this study show that delamination growth at thin film scratching is a stable feature with crack arrest occurring at a decreasing load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sneddon, IN, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile.” Int. J. Eng. Sci., 3 47–57 (1965)

    Article  Google Scholar 

  2. Tabor, D, Hardness of Metals. Oxford University Press, Oxford, 1951

    Google Scholar 

  3. Johnson, KL, “The Correlation of Indentation Experiments.” J. Mech. Phys. Solids, 18 115–126 (1970)

    Article  Google Scholar 

  4. Bhattachharya, AK, Nix, WD, “Finite Element Simulation of Indentation Experiments.” Int. J. Solids Struct., 24 881–891 (1988)

    Article  Google Scholar 

  5. Bhattachharya, AK, Nix, WD, “Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates.” Int. J. Solids Struct., 24 1287–1298 (1988)

    Article  Google Scholar 

  6. Laursen, TA, Simo, JC, “A Study of the Mechanics of Microindentation Using Finite Elements.” J. Mater. Res., 7 618–626 (1992)

    Article  CAS  Google Scholar 

  7. Giannakopoulos, AE, Larsson, PL, Vestergaard, R, “Analysis of Vickers Indentation.” Int. J. Solids Struct., 31 2679–2708 (1994)

    Article  Google Scholar 

  8. Larsson, PL, Giannakopoulos, AE, Söderlund, E, Rowcliffe, DJ, Vestergaard, R, “Analysis of Berkovich Indentation.” Int. J. Solids Struct., 33 221–248 (1996)

    Article  Google Scholar 

  9. Giannakopoulos, AE, Larsson, PL, “Analysis of Pyramid Indentation of Pressure-Sensitive Hard Metals and Ceramics.” Mech. Mater., 25 1–35 (1997)

    Article  Google Scholar 

  10. Larsson, PL, Giannakopoulos, AE, “Tensile Stresses and Their Implication to Cracking at Pyramid Indentation of Pressure-Sensitive Hard Metals and Ceramics.” Mater. Sci. Eng. A, 254 268–281 (1998)

    Article  Google Scholar 

  11. Wang, HF, Yang, X, Bangert, H, Torzicky, P, Wen, L, “Two-Dimensional FEM Simulation of Vickers Indentation of Hardness Measurements.” Thin Solid Films, 214 68–73 (1992)

    Article  CAS  Google Scholar 

  12. Cai, X, Bangert, H, “Hardness Measurements of Thin Films: Determining the Critical Ratio of Depth to Thickness Using FEM.” Thin Solid Films, 264 59–71 (1995)

    Article  CAS  Google Scholar 

  13. Sun, Y, Bell, T, Zheng, S, “Finite-Element Analysis of the Critical Ratio of Coating Thickness to Indentation Depth for Coating Property Measurements by Nanoindentation.” Thin Solid Films, 258 198–204 (1995)

    Article  CAS  Google Scholar 

  14. Knapp, JA, Follstaed, DM, Myers, SM, Barbour, JC, Friedmann, TA, “Finite-Element Modeling of Nanoindentaion.” J. Appl. Phys., 85 1460–1474 (1999)

    Article  CAS  Google Scholar 

  15. Larsson, PL, Peterson, IRM, “Evaluation of Sharp Indentation Testing of Thin Films and Ribbons on Hard Substrate.” J. Test. Eval., 30 64–73 (2002)

    Article  Google Scholar 

  16. Pethica, JB, Hutchings, R, Oliver, WC, “Hardness Measurements at Penetration Depths as Small as 20 nm.” Philos. Mag. A, 48 593–606 (1983)

    Article  CAS  Google Scholar 

  17. Goddard, J, Wilman, H, “A Theory of Friction and Wear During the Abrasion of Metals.” Wear, 5 114–135 (1962)

    Article  Google Scholar 

  18. Childs, THC, “The Sliding of Rigid Cones Over Metals in High Adhesion Conditions.” Int. J. Mech. Sci., 12 393–403 (1970)

    Article  Google Scholar 

  19. De Vathaire, M, Delamare, F, Felder, E, “An Upper Bound Model of Ploughing by a Pyramidal Indenter.” Wear, 66 55–64 (1981)

    Article  Google Scholar 

  20. Gilormini, P, Felder, E, “Theoretical and Experimental Study of the Ploughing of a Rigid-Plastic Semi-Infinite Body by a Rigid Pyramidal Indenter.” Wear, 88 195–206 (1983)

    Article  Google Scholar 

  21. Bucaille, JL, Felder, E, Hochstetter, G, “Mechanical Analysis of the Scratch Test on Elastic and Perfectly Plastic Materials with Three-Dimensional Finite Element Modeling.” Wear, 249 422–432 (2001)

    Article  CAS  Google Scholar 

  22. Wredenberg, F, Larsson, PL, “On the Numerics and Correlation of Scratch Testing.” J. Mech. Mater. Struct., 2 573–594 (2007)

    Article  Google Scholar 

  23. Wredenberg, F, Larsson, PL, “Scratch Testing of Metals and Polymers—Experiments and Numerics.” Wear, 266 76–83 (2009)

    Article  CAS  Google Scholar 

  24. Bull, SJ, “Failure Modes in Scratch Adhesion Testing.” Surf. Coat. Technol., 50 25–32 (1991)

    Article  CAS  Google Scholar 

  25. Frey, N, Mettraux, P, Zambelli, G, Landolt, D, “Modified Scratch Test for Study of the Adhesion of Ductile Coatings.” Surf. Coat. Technol., 63 167–172 (1993)

    Article  Google Scholar 

  26. Thouless, MD, “An Analysis of Spalling in the Microscratch Test.” Eng. Fract. Mech., 61 75–81 (1998)

    Article  Google Scholar 

  27. Malzbender, J, de With, G, “Scratch Testing of Hybrid Coatings of Float Glass.” Surf. Coat. Technol., 135 202–207 (2001)

    Article  CAS  Google Scholar 

  28. Yueguang, W, Manhong, Z, Shan, T, “Characterization of the Fracture Work for Ductile Film Undergoing the Micro-Scratch.” Acta Mech. Sin., 18 494–505 (2002)

    Article  Google Scholar 

  29. Holmberg, K, Laukkanen, A, Ronkainen, H, Wallin, K, Varjus, S, “A Model for Stresses, Crack Generation and Fracture Toughness Calculation in Scratched Tin-Coated Steel Surfaces.” Wear, 254 278–291 (2003)

    Article  CAS  Google Scholar 

  30. Larsson, PL, Wredenberg, F, “On Indentation and Scratching of Thin Films on Hard Substrates.” J. Phys. D Appl. Phys., 41 074022 (2008)

    Article  Google Scholar 

  31. Wredenberg, F, Larsson, PL, “Delamination of Thin Coatings at Scratching—Experiments and Numerics.” J. Mech. Mater. Struct., 4 1041–1062 (2009)

    Article  Google Scholar 

  32. Wredenberg, F, Larsson, PL, “On the Effect of Substrate Deformation at Scratching of Soft Thin Film Composites.” Int. J. Mech. Sci., 52 1008–1014 (2010)

    Article  Google Scholar 

  33. Wredenberg, F, Larsson, PL, “On the Stress Distribution at Scratching of Thin Film Structures.” J. Coat. Technol. Res., 7 623–635 (2010)

    Article  CAS  Google Scholar 

  34. Wredenberg, F, Larsson, PL, “On Scratch Testing of Pressure-Sensitive Polymeric Coatings.” J. Coat. Technol. Res., 7 279–290 (2010)

    Article  CAS  Google Scholar 

  35. ABAQUS, ABAQUS Manual v.6.7. Hibbit, Karlsson & Sorensen, Inc., Pawtucket, RI, 2008

    Google Scholar 

  36. Carlsson, S, Biwa, S, Larsson, PL, “On Frictional Effects at Inelastic Contact Between Spherical Bodies.” Int. J. Mech. Sci., 42 107–128 (2000)

    Article  Google Scholar 

  37. Hutchinson, JW, Suo, Z, “Mixed Mode Cracking in Layered Materials.” Adv. Appl. Mech., 29 63–191 (1992)

    Article  Google Scholar 

  38. Xu, XP, Needleman, A, “Numerical Simulations of Fast Crack Growth in Brittle Solids.” J. Mech. Phys. Solids, 42 1397–1434 (1994)

    Article  Google Scholar 

  39. Needleman, A, “A Continuum Model for Void Nucleation by Inclusion Debonding.” J. Appl. Mech., 54 523–531 (1990)

    Article  Google Scholar 

  40. Ortiz, M, Pandolfi, A, “Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis.” Int. J. Numer. Methods Eng., 44 1267–1282 (1999)

    Article  Google Scholar 

  41. Nilsson, KF, Thesken, JC, Sindelar, P, Giannakopoulos, AE, Storåkers, B, “A Theoretical and Experimental Investigation of Buckling Induced Delamination Growth.” J. Mech. Phys. Solids, 41 749–782 (1993)

    Article  Google Scholar 

  42. Larsson, PL, “On Delamination Buckling and Growth in Circular and Annular Orthotropic Plates.” Int. J. Solids Struct., 27 15–20 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the support through grant 621-2005-5803 from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Lennart Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wredenberg, F., Larsson, PL. On the stability of delamination growth at scratching of thin film structures. J Coat Technol Res 8, 707–717 (2011). https://doi.org/10.1007/s11998-011-9352-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-011-9352-z

Keywords

Navigation