Skip to main content
Log in

A simple and cost-effective method for fabricating lotus-effect composite coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

This paper reports the fabrication of a lotus-effect coating by grafting epoxy (EP) resin on the surface of microsilica and nanosilica, respectively, and subsequent spraying. The coating shows the same structure and capability as lotus leaves, and shows a static contact angle as large as 165° and a sliding angle as small as 2.5°. SEM analysis shows that the hydrophobic capability depends on the surface structure of the coatings. This method may be suited for processing large scale or irregular surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng, L, Jiang, L, “Super-Hydrophobic Surfaces: From Nature to Artificial.” Adv. Mater., 14 1857 (2002)

    Article  CAS  Google Scholar 

  2. Sun, TL, Feng, L, Jiang, L, “Bioinspired Surfaces with Special Wetteability.” Acc. Chem. Res., 38 644 (2005)

    Article  CAS  Google Scholar 

  3. Su, CH, Li, J, Geng, HB, Wang, QJ, Chen, QM, “Fabrication of an Optically Transparent Super-Hydrophobic Surface via Embedding Nano-Silica.” Appl. Surf. Sci., 253 2633 (2006)

    Article  CAS  Google Scholar 

  4. Nakajima, A, Hashimoto, K, Watanable, T, “Recent Research Studies on Super-Hydrophobic Films.” Monatsheffe für Chemie, 132 31 (2001)

    CAS  Google Scholar 

  5. Xie, QD, Fan, GQ, Zhao, N, Guo, XL, Xu, J, Dong, JY, Zhang, LY, Zhang, YJ, Han, CC, “Facile Creation of a Bionic Super-Hydrophobic Block Copolymer Surface.” Adv. Mater., 16 1830 (2004)

    Article  CAS  Google Scholar 

  6. Lu, XY, Zhang, JL, Zhang, CH, Han, YC, “Low-Density Polyethylene (LDPE) Surface with a Wettability Gradient by Tuning its Microstructure.” Macromol. Rapid Commun., 26 537 (2005)

    Article  Google Scholar 

  7. Erbil, HY, Demirel, AL, Avci, Y, Mert, O, “Transformation of a Simple Plastic into a Superhydrophobic Surface.” Science, 299 1377 (2003)

    Article  CAS  Google Scholar 

  8. Jiang, YG, Wang, ZQ, Yu, X, Jiang, L, “Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructure: Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces.” Langmuir, 21 1986 (2005)

    Article  CAS  Google Scholar 

  9. Hiroshi, Y, Masafumi, T, Masaru, T, Masatsugu, S, “Superhydrophobic and Lipophobic Properties of Organized Honeycomb and Pincushion Structures.” Langmuir, 21 3235 (2005)

    Article  Google Scholar 

  10. Li, WZ, Liang, CH, Zhou, WJ, “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum Cathode Catalysts of Direct Methanol Fuel Cells.” J. Phys. Chem. B, 107 6292 (2003)

    Article  CAS  Google Scholar 

  11. Li, WZ, Wang, X, Chen, ZG, Waji, M, Yan, Y, “Carbon Nanotube Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrance Fuel Cell.” Langmuir, 21 9386 (2005)

    Article  CAS  Google Scholar 

  12. Sun, TL, Wang, GJ, Liu, HN, Feng, L, Jiang, L, Zhu, DB, “Control Over the Wettability of an Aligned Carbon Nanotube Film.” J. Am. Chem. Soc., 125 14996 (2003)

    Article  CAS  Google Scholar 

  13. Wu, XD, Zheng, LJ, Wu, D, “Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route.” Langmuir, 21 2665 (2005)

    Article  CAS  Google Scholar 

  14. Hosono, E, Fujihara, S, Honma, I, Zhou, HS, “Superhydrophobic Perpendicular Nano-Pin Film by the Bottom Up Process.” J. Am. Chem. Soc., 127 13458 (2005)

    Article  CAS  Google Scholar 

  15. Zhao, N, Shi, F, Zhang, X, “Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces.” Langmuir, 21 4713 (2005)

    Article  CAS  Google Scholar 

  16. Liu, H, Feng, L, Zhai, J, Jiang, L, Zhu, DB, “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity.” Langmuir, 20 5659 (2004)

    Article  CAS  Google Scholar 

  17. Han, JT, Zheng, YL, Cho, JH, Xu, XR, Cho, K, “Stable Superhydrophobic Organic-Inorganic Hybrid Films by Electrostatic Self-Assembly.” J. Phys. Chem. B, 109 20773 (2005)

    Article  CAS  Google Scholar 

  18. Singh, A, Steely, L, Allock, HR, “Poly[Bis(2,2,2-Triofluoreroethoxy)Phosphazene] Superhydrophobic Nanofibers.” Langmuir, 21 11604 (2005)

    Article  CAS  Google Scholar 

  19. Ma, ML, Hill, MR, Lowery, JL, Fridrickh, VS, “Electrospun Poly(Styrene-Block-Dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity.” Langmuir, 21 5549 (2005)

    Article  CAS  Google Scholar 

  20. Shang, HM, Wang, Y, Takahashi, K, Cao, GZ, Li, D, Xia, YN, “Nanostructured Superhydrophobic Surfaces.” J. Mater. Sci., 40 3587 (2005)

    Article  CAS  Google Scholar 

  21. Shirtcliffe, NJ, McHale, G, Newton, MI, “Intrinsically Superhtdrophobic Organosilica Sol-Gel Foams.” Langmuir, 19 5626 (2003)

    Article  CAS  Google Scholar 

  22. Rao, AV, Kulkarni, MM, Amalnerkar, DP, Seth, T, “Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor.” J. Non-Cryst. Solid, 330 187 (2003)

    Article  CAS  Google Scholar 

  23. Liu, YY, Chen, XQ, Xin, JH, “Super-Hydrophobic Surfaces from a Simple Coating Method: A Bionic Nanoengineering Approach.” Nanotechnology, 17 3259 (2006)

    Article  CAS  Google Scholar 

  24. Guo, ZG, Zhou, F, Liu, WM, “Stable Biomimetic Super-Hydrophobic Engineering Materials.” J. Am. Chem. Soc., 127 15670 (2005)

    Article  CAS  Google Scholar 

  25. Qian, BT, Shen, ZQ, “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates.” Langmuir, 21 9007 (2005)

    Article  CAS  Google Scholar 

  26. Wenzel, RN, “Resistance of Solid Surface to Wetting by Water.” Ind. Eng. Chem., 28 988 (1936)

    Article  CAS  Google Scholar 

  27. Cassie, ABD, Baxter, S, “Wetteability of Porous Surfaces.” Trans. Faraday Soc., 40 546 (1944)

    Article  CAS  Google Scholar 

  28. Marmur, A, “The Lotus Effect: Superhydrophobicity and Metastability.” Langmuir, 20 3517 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, for static CA and SA measurement. The author is grateful to the Center of Analyses and Testing, Shandong University of Technology, for SEM and XPS measurement. This work was supported by the doctoral research fund of Shandong University of Technology (406040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, C. A simple and cost-effective method for fabricating lotus-effect composite coatings. J Coat Technol Res 9, 135–141 (2012). https://doi.org/10.1007/s11998-009-9230-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9230-0

Keywords

Navigation