Skip to main content
Log in

On scratch testing of pressure-sensitive polymeric coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Scratching of polymeric coatings on hard substrates is studied experimentally and numerically from a mechanical point of view. In particular, the behavior of local and global mechanical properties, as well as the delamination behavior, at scratching due to pressure-sensitive effects is of interest. The numerical investigation is performed using the finite element method (FEM) where pressure sensitivity is modeled using the classical Drucker–Prager plasticity model (Drucker, Prager, Q. Appl. Math., 10 157–165 (1952)) while the adhesion of the coating to the substrate is modeled as a cohesive zone where relevant model parameters are determined experimentally using the double cantilever beam test with uneven bending moments (DCB-UBM). Good correlation between experimental and numerical results were achieved and the most important finding concerns the fact that the dependence of pressure sensitivity proved to be different for different mechanical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bhattachharya, AK, Nix, WD, “Finite Element Simulation of Indentation Experiments.” Int. J. Solids Struct., 24 881–891 (1988)

    Article  Google Scholar 

  2. Bhattachharya, AK, Nix, WD, “Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates.” Int. J. Solids Struct., 24 1287–1298 (1988)

    Article  Google Scholar 

  3. Laursen, TA, Simo, JC, “A Study of the Mechanics of Microindentation Using Finite Elements.” J. Mater. Res., 7 618–626 (1992)

    Article  CAS  ADS  Google Scholar 

  4. Giannakopoulos, AE, Larsson, PL, Vestergaard, R, “Analysis of Vickers Indentation.” Int. J. Solids Struct., 31 2679–2708 (1994)

    Article  MATH  Google Scholar 

  5. Larsson, PL, Giannakopoulos, AE, Söderlund, E, Rowcliffe, DJ, Vestergaard, R, “Analysis of Berkovich Indentation.” Int. J. Solids Struct., 33 221–248 (1996)

    Article  MATH  Google Scholar 

  6. Giannakopoulos, AE, Larsson, PL, “Analysis of Pyramid Indentation of Pressure-Sensitive Hard Metals and Ceramics.” Mech. Mater., 25 1–35 (1997)

    Article  Google Scholar 

  7. Larsson, PL, Giannakopoulos, AE, “Tensile Stresses and Their Implication to Cracking at Pyramid Indentation of Pressure-Sensitive Hard Metals and Ceramics.” Mater. Sci. Eng. A, 254 268–281 (1998)

    Article  Google Scholar 

  8. Wang, HF, Yang, X, Bangert, H, Torzicky, P, Wen, L, “Two-Dimensional FEM Simulation of Vickers Indentation of Hardness Measurements.” Thin Solid Films, 214 68–73 (1992)

    Article  CAS  ADS  Google Scholar 

  9. Cai, X, Bangert, H, “Hardness Measurements of Thin Films: Determining the Critical Ratio of Depth to Thickness Using FEM.” Thin Solid Films, 264 59–71 (1995)

    Article  CAS  ADS  Google Scholar 

  10. Sun, Y, Bell, T, Zheng, S, “Finite-Element Analysis of the Critical Ratio of Coating Thickness to Indentation Depth for Coating Property Measurements by Nanoindentation.” Thin Solid Films, 258 198–204 (1995)

    Article  CAS  ADS  Google Scholar 

  11. Knapp, JA, Follstaed, DM, Myers, SM, Barbour, JC, Friedmann, TA, “Finite-Element Modeling of Nanoindentaion.” J. Appl. Phys., 85 1460–1474 (1999)

    Article  CAS  ADS  Google Scholar 

  12. Larsson, PL, Peterson, IRM, “Evaluation of Sharp Indentation Testing of Thin Films and Ribbons on Hard Substrate.” J. Test. Eval., 30 64–73 (2002)

    Article  Google Scholar 

  13. Bucaille, JL, Felder, E, Hochstetter, G, “Mechanical Analysis of the Scratch Test on Elastic and Perfectly Plastic Materials with Three-Dimensional Finite Element Modeling.” Wear, 249 422–432 (2001)

    Article  CAS  Google Scholar 

  14. Johnson, KL, “The Correlation of Indentation Experiments.” J. Mech. Phys. Solids, 18 115–126 (1970)

    Article  ADS  Google Scholar 

  15. Larsson, PL, “On the Mechanical Behavior of Global Parameters in Material Characterization by Sharp Indentation Testing.” J. Test. Eval., 32 310–321 (2004)

    Google Scholar 

  16. Wredenberg, F, Larsson, PL, “On the Numerics and Correlation of Scratch Testing.” J. Mech. Mater. Struct., 2 573–594 (2007)

    Article  Google Scholar 

  17. Wredenberg, F, Larsson, PL, “Scratch Testing of Metals and Polymers—Experiments and Numerics.” Wear, 266 76–83 (2009)

    Article  CAS  Google Scholar 

  18. Benjamin, P, Weaver, C, “Measurement of Adhesion of Thin Films.” Proc. R. Soc. Lond. A Math. Phys. Sci., 254 163–176 (1960)

    Article  CAS  ADS  Google Scholar 

  19. Bull, SJ, “Failure Modes in Scratch Adhesion Testing.” Surf. Coat. Technol., 50 25–32 (1991)

    Article  CAS  Google Scholar 

  20. Frey, N, Mettraux, P, Zambelli, G, Landolt, D, “Modified Scratch Test for Study of the Adhesion of Ductile Coatings.” Surf. Coat. Technol., 63 167–172 (1993)

    Article  Google Scholar 

  21. Thouless, MD, “An Analysis of Spalling in the Microscratch Test.” Eng. Fract. Mech., 61 75–81 (1998)

    Article  Google Scholar 

  22. Malzbender, J, de With, G, “Scratch Testing of Hybrid Coatings of Float Glass.” Surf. Coat. Technol., 135 202–207 (2001)

    Article  CAS  Google Scholar 

  23. Holmberg, K, Laukkanen, A, Ronkainen, H, Wallin, K, Varjus, S, “A Model for Stresses, Crack Generation and Fracture Toughness Calculation in Scratched Tin-Coated Steel Surfaces.” Wear, 254 278–291 (2003)

    Article  CAS  Google Scholar 

  24. Larsson, PL, Wredenberg, F, “On Indentation and Scratching of Thin Films on Hard Substrates.” J. Phys. D Appl. Phys., 41 074022 (2008)

    Article  Google Scholar 

  25. Wredenberg, F, Larsson, PL, “On the Effect of Substrate Deformation at Scratching of Soft Thin Film Composites.” Report, KTH Solid Mechanics, SE-10044. Stockholm, Sweden (2008)

  26. Briscoe, BJ, Evans, PD, Biswas, SK, Sinha, SK, “The Hardness of Poly(methylmethacrylate).” Tribol. Int., 29 93–104 (1996)

    Article  CAS  Google Scholar 

  27. Yueguang, W, Manhong, Z, Shan, T, “Characterization of the Fracture Work for Ductile Film Undergoing the Micro-Scratch.” Acta Mech. Sinica, 18 494–505 (2002)

    Article  ADS  Google Scholar 

  28. Wredenberg, F, Larsson, PL, “Delamination of Thin Coatings at Scratching—Experiments and Numerics.” Report 456, KTH Solid Mechanics, SE-10044. Stockholm, Sweden (2008). Accepted for publication in J. Mech. Mater. Struct.

  29. Spitzig, WA, Richmond, O, “Effect of Hydrostatic Pressure on the Deformation Behavior of Polyethylene and Polycarbonate in Tension and Compression.” Polym. Eng. Sci., 19 1129–1139 (1979)

    Article  CAS  Google Scholar 

  30. Spitzig, WA, Richmond, O, “The Effect of Pressure on the Flow Stress of Metals.” Acta Metall., 32 457–463 (1984)

    Article  CAS  Google Scholar 

  31. Francis, LF, McCormick, AV, Vaessen, DM, “Development and Measurement of Stress in Polymer Coatings.” J. Mater. Sci., 37 4717–4731 (2002)

    Article  CAS  Google Scholar 

  32. Drucker, DC, Prager, W, “Soil Mechanics and Plastic Analysis or Limit Design.” Q. Appl. Math., 10 157–165 (1952)

    MATH  MathSciNet  Google Scholar 

  33. Hutchinson, JW, Suo, Z, “Mixed Mode Cracking in Layered Materials.” Adv. Appl. Mech., 29 63–191 (1992)

    Article  MATH  Google Scholar 

  34. Sørensen, BF, Jacobsen, TK, “Determination of Cohesive Laws by the J Integral Approach.” Eng. Fract. Mech., 70 1841–1858 (2003)

    Article  Google Scholar 

  35. Sørensen, BF, Jørgensen, K, Jacobsen, TK, Østergaard, RC, “Dcb-Specimen Loaded with Uneven Bending Moments.” Int. J. Fract., 141 163–176 (2006)

    Article  Google Scholar 

  36. Xu, XP, Needleman, A, “Numerical Simulations of Fast Crack Growth in Brittle Solids.” J. Mech. Phys. Solids, 42 1397–1434 (1994)

    Article  MATH  ADS  Google Scholar 

  37. Needleman, A, “A Continuum Model for Void Nucleation by Inclusion Debonding.” J. Appl. Mech., 54 523–531 (1990)

    Article  Google Scholar 

  38. Ortiz, M, Pandolfi, A, “Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis.” Int. J. Numer. Methods Eng., 44 1267–1282 (1999)

    Article  MATH  Google Scholar 

  39. ABAQUS, ABAQUS Manual v.6.7. Hibbit, Karlsson & Sorensen, Inc., Pawtucket, RI (2008)

  40. Williams, JA, “Analytical Models of Scratch Hardness.” Tribol. Int., 29 675–694 (1996)

    Article  CAS  Google Scholar 

  41. Carlsson, S, Biwa, S, Larsson, PL, “On Frictional Effects at Inelastic Contact Between Spherical Bodies.” Int. J. Mech. Sci., 42 107–128 (2000)

    Article  MATH  Google Scholar 

  42. Nilsson, KF, Thesken, JC, Sindelar, P, Giannakopoulos, AE, Storåkers, B, “A Theoretical and Experimental Investigation of Buckling Induced Delamination Growth.” J. Mech. Phys. Solids, 41 749–782 (1993)

    Article  ADS  Google Scholar 

  43. Larsson, PL, “On Delamination Buckling and Growth in Circular and Annular Orthotropic Plates.” Int. J. Solids Struct., 27 15–28 (1991)

    Article  MathSciNet  Google Scholar 

  44. Martin, E, Poitou, B, Leguillon, D, Gatt, JM, “Competition Between Deflection and Penetration at an Interface in the Vicinity of a Main Crack.” Int. J. Fract., 151 247–268 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support received through grant #621-2005-5803 from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Lennart Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wredenberg, F., Larsson, PL. On scratch testing of pressure-sensitive polymeric coatings. J Coat Technol Res 7, 279–290 (2010). https://doi.org/10.1007/s11998-009-9202-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9202-4

Keywords

Navigation