Skip to main content
Log in

Effect of C/B ratio in reactants on low-pressure CVD boron-doped carbon deposited from a BCl3–C3H6–H2 mixture

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Propylene was used to fabricate boron-doped carbon coatings by low-pressure chemical vapor deposition. The effects of carbon/boron (C/B) ratio in reactants on the deposition rate, morphologies, and bonding states of the deposits were investigated. Deposition rate increased with increasing C/B ratio, when C/B ratio was less than 4.0. Then, deposition rate decreased with increasing C/B ratio. The maximum rate was 500 nm/h. SEM results showed that cross section morphologies and thickness of deposits were influenced by C/B ratio. Morphologies were compact and not-delaminated with a low C/B ratio, however nanoscale delamination occurred in the deposits with a high C/B ratio. The infiltration characteristic was also influenced by the C/B ratio. The suitable C/B ratio was 1.0–2.0 for infiltration in a T300 carbon bundle. XPS results showed that carbon content is major in the deposits with all C/B ratios. The boron contents decreased and carbon contents increased with increasing C/B ratio. B-sub-C and BC2O were main bonding states. The total contents of B-sub-C and BC2O were above 60.0 at.% with all C/B ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Naslain R, Guette A, Rebillat F, Pailler R, Langlais F, Bourrat X. Boron-Bearing Species in Ceramic Matrix Composites for Long-Term Aerospace Applications. J. Solid State Chem. 2004; 177(2):449–456 doi:10.1016/j.jssc.2003.03.005

    Article  CAS  ADS  Google Scholar 

  2. Naslain R. Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: An Overview. Compos. Sci. Technol. 2004; 64(2):155–170 doi:10.1016/S0266-3538(03)00230-6

    Article  CAS  Google Scholar 

  3. McKee DW. Borate Treatment of Carbon Fibers and Carbon/Carbon Composites for Improved Oxidation Resistance. Carbon 1986; 24(6):737–741 doi:10.1016/0008-6223(86)90183-1

    Article  CAS  Google Scholar 

  4. McKee D W, Spiro C L, Lamby E J. The Effects of Boron Additives on the Oxidation Behavior of Carbons. Carbon 1984; 22(6):507–511 doi:10.1016/0008-6223(84)90083-6

    Article  CAS  Google Scholar 

  5. Ehrburger P, Baranne P, Lahaye J. Inhibition of the Oxidation of Carbon–Carbon Composite by Boron Oxide. Carbon 1986; 24(4):495–499 doi:10.1016/0008-6223(86)90274-5

    Article  CAS  Google Scholar 

  6. Derre A, Filipozzi L, Peron F. High Temperature Behaviour and Oxidation Resistance of Carbon-Boron-Nitrogen Compounds Obtained by LPCVD. J. Phys. IV, 1993; 3(3):195–202

    Article  CAS  Google Scholar 

  7. Cermignani W, Paulson TE, Onneby C, Pantano CG. Synthesis and Characterization of Boron-Doped Carbons. Carbon 1995; 33(4):367–374 doi:10.1016/0008-6223(94)00160-2

    Article  CAS  Google Scholar 

  8. Way BM, Dahn JR, Tiedje T, Myrtle K, Kasrai M. Preparation and Characterization of B x C1−x Thin Films with the Graphite Structure. Phys. Rev. B: Condens Matter 1992; 46(3):1697–1702 doi:10.1103/PhysRevB.46.1697

    CAS  ADS  Google Scholar 

  9. Kouvetakis J, Kaner RB, Sattler ML, Bartlett N. A Novel Graphite-Like Material of Composition BC3, and Nitrogen–Carbon Graphites. J. Chem. Soc. Chem. Commun. 1986; 24:1758–1759 doi:10.1039/c39860001758

    Article  Google Scholar 

  10. Jacques S, Guette A, Bourrat X, Langlais F, Guimon C, Labrugere C. LPCVD and Characterization of Boron-Containing Pyrocarbon Materials. Carbon 1996; 34(9):1135–1143 doi:10.1016/0008-6223(96)00075-9

    Article  CAS  Google Scholar 

  11. Li HJ, Li AJ, Bai RC, Li KZ. Numerical Simulation of Chemical Vapor Infiltration of Propylene into C/C Composites with Reduced Multi-Step Kinetic Models. Carbon 2005; 43(14): 2937–2950 doi:10.1016/j.carbon.2005.05.046

    Article  CAS  Google Scholar 

  12. Vignoles, L, Langlais, F, Descamps, C, Mouchon, A, Poche, L, Reuge, N, Betrand, N, “CVD and CVI of Pyrocarbon from Various Precursors.” Surf. Coat. Tech., 188–189 241–249 (2004). doi:10.1016/j.surfcoat.2004.08.036

  13. Luo RY. Friction Performance of C/C Composites Prepared Using Rapid Directional Diffused Chemical Vapor Infiltration Processes. Carbon 2002; 40(8): 1279–1285 doi:10.1016/S0008-6223(01)00283-4

    Article  CAS  Google Scholar 

  14. Liu YS, Cheng LF, Zhang LT, Wu SJ, Li D, Xu YD. Oxidation Protection of Multilayer CVD SiC/B/SiC Coatings for 3D C/SiC Composite. Mater. Sci. Eng. A, 2007; 466(1–2):172–177 doi:10.1016/j.msea.2007.02.059

    Google Scholar 

  15. Wu SJ, Cheng LF, Zhang LT, Xu YD. Oxidation Behavior of 2D C/SiC with a Multi-Layer CVD SiC Coatings. Surf. Coat. Tech., 2006; 200(14–15): 4489–4492 doi:10.1016/j.surfcoat.2005.03.009

    Article  CAS  Google Scholar 

  16. Yin XW, Cheng LF, Zhang LT, Xu YD. Oxidation Behaviors of C/SiC in the Oxidizing Environments Containing Water Vapor. Mater. Sci. Eng. A, 2003; 348(1–2): 47–53 doi:10.1016/S0921-5093(02)00644-5

    Google Scholar 

  17. Wu SJ, Cheng LF, Zhang LT, Xu YD, Zhang Q. Oxidation Behavior of 3D Hi-Nicalon/SiC Composite. Mater. Lett., 2006; 60(25–26):412–417

    Google Scholar 

  18. Wu SJ, Cheng LF, Zhang LT, Xu YD, Zhang Q. Comparison of Oxidation Behaviors of 3D C/PyC/SiC and SiC/PyC/SiC Composites in an O2-Ar Atmosphere. Mater. Sci. Eng. B2006; 130(1–3):215–219 doi:10.1016/j.mseb.2006.03.012

    Article  CAS  Google Scholar 

  19. Wu SJ, Cheng LF, Zhang LT, Xu YD, Luan XG, Mei H. Corrosion of SiC/SiC Composite in Na2SO4 Vapor Environments from 1000 to 1500°C. Compos. Part A: Appl. Sci. Manuf. 2006; 37(9):1396–1401 doi:10.1016/j.compositesa.2005.07.010

    Article  Google Scholar 

  20. Wu SJ, Cheng LF, Zhang J, Zhang LT, Luan XG, Mei H, et al. Tension–Tension Fatigue Damage Characteristics of a 3D SiC/SiC Composite in H2O–O2–Ar Environment at 1300°C. Mater. Sci. Eng. A 2006; 435–436(5):412–417 doi:10.1016/j.msea.2006.07.041

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation in China (No. 90405015, No. 50672076, No. 50425208, and No. 50642039, No. 50802076). This work was also supported by the Doctorate Foundation of Northwestern Polytechnical University (CX200505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, L., Cheng, L. et al. Effect of C/B ratio in reactants on low-pressure CVD boron-doped carbon deposited from a BCl3–C3H6–H2 mixture. J Coat Technol Res 6, 509–515 (2009). https://doi.org/10.1007/s11998-008-9128-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-008-9128-2

Keywords

Navigation